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ABSTRACT
We observed NGC 1624-2, the O-type star with the largest known magnetic field (Bp ∼ 20 kG),
in X-rays with the Advanced CCD Imaging Spectrometer (ACIS-S) camera on-board the Chan-
dra X-ray Observatory. Our two observations were obtained at the minimum and maximum
of the periodic Hα emission cycle, corresponding to the rotational phases where the mag-
netic field is the closest to equator-on and pole-on, respectively. With these observations, we
aim to characterize the star’s magnetosphere via the X-ray emission produced by magneti-
cally confined wind shocks. Our main findings are as follows. (i) The observed spectrum of
NGC 1624-2 is hard, similar to the magnetic O-type star θ1 Ori C, with only a few photons
detected below 0.8 keV. The emergent X-ray flux is 30 per cent lower at the Hα minimum
phase. (ii) Our modelling indicated that this seemingly hard spectrum is in fact a consequence
of relatively soft intrinsic emission, similar to other magnetic Of?p stars, combined with a
large amount of local absorption (∼1–3× 1022 cm−2). This combination is necessary to re-
produce both the prominent Mg and Si spectral features, and the lack of flux at low energies.
NGC 1624-2 is intrinsically luminous in X-rays (log Lem

X ∼ 33.4) but 70–95 per cent of the X-
ray emission produced by magnetically confined wind shocks is absorbed before it escapes the
magnetosphere (log LISMcor

X ∼ 32.5). (iii) The high X-ray luminosity, its variation with stellar
rotation, and its large attenuation are all consistent with a large dynamical magnetosphere with
magnetically confined wind shocks.

Key words: stars: early-type – stars: individual: NGC 1624-2 – stars: magnetic field – stars:
massive – stars: winds, outflows – X-rays: stars.

1 IN T RO D U C T I O N

A small fraction of O stars have large-scale, stable surface magnetic
fields, as revealed in only the past decade by spectropolarimetric
measurements of the Zeeman effect (e.g. Donati et al. 2006; Martins
et al. 2010; Wade et al. 2012a). Even before these direct detections,
an oblique dipole field was suspected in the prototype magnetic
O star, θ1 Ori C, notably due to its luminous, rotationally modulated

�E-mail: vpetit@fit.edu
†FRS-FNRS research associate.

X-ray emission (Stahl et al. 1996; Gagné et al. 1997). Indeed, strong
and rotationally modulated X-ray emission due to a combination of
occultation and local absorption was predicted to be the hallmark of
the wind-fed dynamical magnetospheres of magnetic O stars with
dipole fields misaligned with their rotational axis (e.g. Babel &
Montmerle 1997a; Gagné et al. 2005; ud-Doula et al. 2014). The
X-rays are due to the radiative cooling of plasma that is shock-
heated when wind-flows from opposite hemispheres collide near
the magnetic equatorial plane (see Fig. 1). Measurements of this
X-ray emission are therefore a primary diagnostic of the physical
conditions in, and processes that control, the magnetospheres of
O stars.

C© 2015 The Authors
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X-ray emission from NGC 1624-2 3289

Figure 1. Schematic of a magnetic massive star dynamical magnetosphere
(e.g. Sundqvist et al. 2012; Petit et al. 2013). Solid blue lines indicate regions
below the last closed magnetic loop that confine the wind, located near the
Alfvén radius RA. Most of the Hα emission originates here. Dashed lines
indicate regions where the momentum of the wind results in open field lines.
The bulk of the X-rays are produced in the region indicated in purple; see
Section 6. The insets illustrate the view of an observer as the star’s rotation
changes the orientation of the magnetosphere. It is important to note that due
to the long rotation periods of magnetic O-type stars, the dynamical effects of
rotation on the magnetospheric structure are negligible (ud-Doula, Owocki
& Townsend 2008).

The rotational modulation of the X-ray emission in θ1 Ori C is due
to occultation of the post-shock material by the stellar disc during
equator-on viewing phases, with no conclusive evidence in phase-
resolved high-resolution Chandra spectra for any large absorption
of X-rays by the magnetosphere, despite the fact that absorption
by cooled post-shock plasma was expected (Babel & Montmerle
1997b; Donati et al. 2002; Gagné et al. 2005). The surface field
strength of a little over 1 kG implies a maximum closure radius of
magnetic field lines1 of only slightly more than 2R�. The modest
size of this star’s magnetosphere therefore leads to relatively low
absorption column densities.

Since the direct detection of the magnetic field on θ1 Ori C
(Donati et al. 2002), significant magnetic fields have been mea-
sured on ∼10 other O stars (see Petit et al. 2013; Morel et al. 2014).
Significantly, most of these stars are classified as Of?p (Walborn
et al. 2010), though the reason for this connection between spectral
morphology and magnetism is not yet fully understood. All mag-
netic O stars share physical and magnetic properties with θ1 Ori C.
As discussed by Petit et al. (2013) all but one of the magnetic O-
type stars are slow rotators, consistent with strong magnetic braking
associated with their powerful stellar winds (ud-Doula, Owocki &
Townsend 2009). Their observed optical magnetospheric proper-

1 located near the Alfvén radius RA, see equations (40) and (41) of ud-Doula
et al. (2014).

ties are well explained within the dynamical magnetosphere frame-
work: with negligible rotational support, the plasma environment in
the magnetosphere should be quite dynamic, with trapped plasma
falling back down on to the star in not much longer than a free-fall
time, as confirmed by numerical magnetohydrodynamic (MHD)
simulations (ud-Doula et al. 2013).

Magnetic O stars are generally an order of magnitude more lu-
minous in X-rays than non-magnetic O stars of the same spectral
subtype, and their X-rays are somewhat harder, although the X-ray
emission from other Of?p stars is generally not as hard as that of
θ1 Ori C (Nazé et al. 2014). Given the similarity in physical and
magnetic properties among the magnetic O-type stars, this differ-
ence in spectral X-ray properties has yet to be understood.

The star that is the subject of this paper, the slowly rotating O-star
NGC 1624-2, has a field strength more than an order of magnitude
larger than any other known magnetic O-stars, at nearly 20 kG
(Wade et al. 2012b, hereafter W12b). Given that field strength, and
a similar expected wind mass-loss rate as θ1 Ori C and the Of?p
stars, it should have a significantly larger magnetic closure radius
and thus a significantly larger dynamical magnetosphere, extending
out to ∼11 R�. In order to explore the X-ray generation and also the
possible magnetospheric absorption of X-rays in this star’s giant
magnetosphere, we have obtained two Chandra ACIS observations
of NGC 1624-2 at rotational phases that correspond to two viewing
angles, respectively, when the magnetic pole and equator are closest
to the line of sight.

In this paper, we present detailed analysis of the X-ray spectral
properties at both phases, including modelling of any possible lo-
cal absorption by partially ionized plasma in the magnetosphere.
This allows us to draw conclusions about the physical properties of
the magnetically confined wind shocks, the wind-feeding rate and
heating efficiency, the post-shock cooling plasma, and the spatial
distribution of magnetospheric material. In addition to this empiri-
cal spectral modelling, we present a comparison with recent MHD
models of X-ray emission from magnetospheres (ud-Doula et al.
2014). Also preliminary results from the post-processing of MHD
simulations of a generic O star magnetosphere provide information
about the expected viewing-angle dependence of the X-ray absorp-
tion column density (Owocki et al., in preparation). The goal of this
paper is to constrain models and extend our understanding of the
dynamical magnetospheres of O stars via observations of the most
extreme example currently known.

2 ST E L L A R PRO P E RT I E S O F N G C 1 6 2 4 - 2

NGC 1624-2 is an O7 f?cp star that was recently singled out as the
most extreme example of the Of?p spectroscopic category (Walborn
et al. 2010). Soon after, a ∼20 kG field was derived by the MiMeS
Collaboration (W12b). Although very strong magnetic fields have
been measured for a handful of lower mass ApBp stars (e.g. 34 kG
Babcock’s star; see Mathys et al. 1997), NGC 1624-2 has by far the
strongest magnetic field ever measured on an O-type star: all the
others have Bpole < 2.5 kG. According to the properties derived by
W12b, summarized here in Table 1, NGC 1624-2’s magnetosphere
is estimated to extend to RA ≈ 11R� hence trapping 95 per cent of
the outflowing wind, much more than other magnetic O stars which
have RA of just a few stellar radii.

W12b determined a rotational period of 157.99 d from the ob-
served spectral variations. This slow rotation is consistent with the
circular polarization signal variation, and with the narrow photo-
spheric line profiles. As pointed out by Sundqvist et al. (2013),
the width of the spectral lines, which exhibit Zeeman splitting,

MNRAS 453, 3288–3299 (2015)
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Table 1. Summary of adopted stellar, wind, mag-
netic, and magnetospheric properties of NGC 1624-2
from W12b. The stellar and magnetic parameters
were derived from optical spectropolarimetry. The
unperturbed wind mass-loss rate Ṁ and terminal ve-
locity v∞ were calculated based on the theoretical
prescriptions of Vink, de Koter & Lamers (2001).
The wind magnetic confinement Alfvén radius RAlf,
and the Kepler co-rotation radius RKep are calculated
as described by Petit et al. (2013).

Spectral type O6.5f?cp – O8f?cp

Teff (K) 35 000 ± 2000
log g (cgs) 4.0 ± 0.2
R� (R�) 10 ± 3
log (L�/L�) 5.10 ± 0.2
Mevol

� (M�) 28+7
−5

log ṀB=0 (M� yr−1) −6.8
v∞, B = 0 (km s−1) 2875
E(B − V) (mag) 0.802 ± 0.02
RV 3.74 ± 0.1
log d (pc) 3.71 ± 0.1
Prot (d) 157.99 ± 0.94
Bd (kG) ∼20
RAlf (R∗) 11
RKep (R∗) >40

is completely accounted for by Zeeman broadening, and does not
show any signs of the large macroturbulent broadening generally
observed in both normal and magnetic O-type stars. This suggests
that NGC 1624-2 is the only known magnetic O-type star with a
field strong enough to stabilize its deep photosphere, providing the
first empirical constraints on the connection between the subsurface
convection zone present in models of hot, massive stars (Cantiello
et al. 2009), and macroturbulent line broadening.

The dense magnetospheres of magnetic O stars produce emission
in optical recombination lines, such as the Balmer lines, which is
modulated according to the rotational period. This variation is due
to changes in the projected distribution of optically thick magneto-
spheric material (see Fig. 1; Sundqvist et al. 2012). Although these
slowly rotating magnetospheres are quite dynamic in nature, their
volume-integrated properties are quite stable (Howarth et al. 2007;
ud-Doula et al. 2013) from one rotation cycle to another.

Although the detailed magnetic geometry of NGC 1624-2 has yet
to be established, the single-wave, sinusoidal nature of the spectral
line variation implies that we only view one magnetic hemisphere
of a mainly dipolar field during the rotation of the star (W12b).
However, the large variation in the Hα emission (Fig. 2) between
a ‘high state’, when the magnetic pole is most closely aligned with
the observer’s line of sight, and a ‘low state’, when the magnetic
equator is closest to the line of sight (e.g. Sundqvist et al. 2012)
indicates a large change in our viewing angle (see Fig. 1).

NGC 1624 was observed for 10 ks with the Chandra X-ray Obser-
vatory in 2006 (ObsID 7473, PI Gordon). Even though NGC 1624-2
was detected with only 38 counts, only one count has an energy be-
low 1 keV indicating rather hard emission. According to the analysis
of W12b, this spectrum could be reproduced with a hot (∼2.3 keV)
plasma, similar to that of θ1 Ori C. It could also be reproduced with
a cooler (∼0.7 keV) plasma, similar to that of the other Of?p stars,
that would be more heavily absorbed (NH ∼ 2 × 1022 cm−2). We
note that even during the low state, the Hα emission of NGC 1624-
2 is much stronger than that of any other known magnetic O-type
star (W12b, see their fig. 11). This suggests that the magnetosphere

Figure 2. Equivalent width of the Hα line of NGC 1624-2 phased with the
ephemeris of W12b. The symbol shapes represent the rotation number since
the ephemeris JD0. The optical spectra were obtained with ESPaDOnS at
Canada–France–Hawaii Telescope over a period of time corresponding to
nearly three rotations of the star, by the MiMeS Collaboration (Wade et al.
2011) and on PI time (Wade). The Chandra observations, indicated by the
grey shaded area, were obtained during rotation cycle no. 3.

must indeed be very large, and higher S/N X-ray observations are
the perfect tool to verify this hypothesis through the presence of
X-ray absorption.

3 O BSERVATI ONS

We obtained two observations of NGC 1624-2 with the bare
Advanced CCD Imaging Spectrometer (ACIS-S) camera in VFaint
mode aboard the Chandra X-ray Observatory (PI: Petit). The
ACIS-S camera allows for imaging spectroscopy combining mod-
erate spectral resolution (FWHM � 150 eV at 1.5 keV) and sub-
arcsec spatial resolution. According to the ephemeris of W12b
(JD = [245 5967.0 ± 10] + [157.99 ± 0.94] × E), the observa-
tions were obtained at rotational phase 0.43 ± 0.09 (ObsID 14572)
and 0.96 ± 0.09 (ObsID 14571). These correspond roughly to the
low state and the high state, respectively (see Fig. 2).

The data were reprocessed according to standard reduction
procedures2 with CIAO version 4.5. Using the CELLDETECT tool, an
X-ray source is detected at the position of NGC 1624-2 in both
observations (Fig. 3). The pile-up fraction, evaluated from maps
of count rate per frame, is less than one per cent for both observa-
tions. Table 2 compiles the aperture photometry calculated with the
APRATES tool. The net photon flux is 40 per cent higher during the
Hα emission high state than at the low state.

4 TIMING A NA LY SIS

For both observations, we produced light curves to search for vari-
ability on a time-scale comparable or less than the 50 ks exposure.
Such a time-scale corresponds to only 0.4 per cent of a rotation cy-
cle, but is comparable to the wind flow time-scale. The broad-band
background-subtracted light curves, binned to an arbitrary 2 ks,
are shown in red circles in Fig. 4. We applied the Gregory–Loredo

2 The CIAO analysis threads are available at http://cxc.harvard.edu/ciao/
threads/index.html.

MNRAS 453, 3288–3299 (2015)
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X-ray emission from NGC 1624-2 3291

Figure 3. Chandra ACIS-S images of NGC 1624-2 (position marked by the green cross) during the Hα low state (left) and high state (right). The sources
detected by CELLDETECT, including NGC 1624-2, are indicated by solid red ellipses. The spectral extraction source (thick) and background (thin) regions are
shown as dashed blue circles. The other point sources circled in dashed blue were excluded from the background estimate.

Table 2. Observation details and aperture photometry results.

Hα low state Hα high state

ObsID 14572 14571
Date 2013-08-03 2013-10-27
Start HJD 2456508.20 2456592.84
Rotational phase 0.43±0.09 0.96±0.09
Net exposure (ks) 49.5 49.5
Net counts 301+29

−29 431+35
−35

Count rate (ct s−1) 6.1+0.6
−0.6 × 10−3 8.7+0.7

−0.7 × 10−3

Photon flux (Ph cm−2 s−1) 1.7+0.2
−0.2 × 10−5 2.4+0.2

−0.2 × 10−5

variability algorithm to the source event list, as implemented in
the CIAO-4.5 routine GLVARY. No evidence of short-term variability is
found and the resulting probability-weighted light curves are shown
as black squares. We also applied a maximum-likelihood block al-

gorithm that divides the event list into blocks of constant count rate
(Wolk et al. 2005). Each epoch is reproduced by a single block
(grey bar), which also indicates a lack of short-term variability. A
comparison of the two epochs however confirms the statistically
significant variability on the longer rotational time-scale.

5 SP E C T R A L A NA LY S I S

We extracted the spectra of NGC 1624-2 and associated instru-
mental responses using the standard SPECEXTRACT procedure. We
grouped the spectral channels to obtain a signal-to-noise ratio of 3
in each bin, allowing the use of χ2 statistics in our model fitting.
Fig. 5 shows the resulting spectra (top panel) for the low state (thin
black) and high state (thick red) observations. The bottom panel
shows a representation of the spectral response functions for both
observations. They are practically identical, allowing meaningful

Figure 4. Light curves between 0.3 and 10 keV, binned by 2 ks (red circles). The probability-weighted light curves from the Gregory–Loredo variability
algorithm implemented in the GLVARY routine are shown with black squares. The maximum-likelihood block algorithm resulted in a single block for each
observation, shown by the grey bars.

MNRAS 453, 3288–3299 (2015)
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Figure 5. ACIS-S spectra of NGC 1624-2 during the low state (thin black)
and the high state (thick red). The bottom panel shows a representation
of the instrumental response, i.e. the spectra that would be observed if the
emission model was flat. The small differences between the two epochs are
caused by slight variations in response and adaptive signal-to-noise binning.

direct visual comparison of the spectra. In both observations, most
of the photons have energies higher than 0.8 keV. The high state
observation shows an excess of soft (∼1 keV) photons. Prominent
spectral features, similar in both epochs, are seen between 1 and
2 keV.

We modelled the spectra with XSPEC 12.7 (Arnaud 1996) with an
optically thin plasma model from the Astrophysical Plasma Emis-
sion Code (APEC with ATOMDB 2.0.1; Smith et al. 2001; Foster et al.
2012), which assumes collisional-radiative equilibrium (‘coronal
emission’). Given the lack of detailed abundance analysis in the
optical (W12b), we here adopted solar abundance values (Asplund
et al. 2009).

X-rays in O-type stars are generally produced by shock-heated
wind material that mostly cools by radiative emission. If the wind
material is continuously heated and cooled, a time-averaged descrip-
tion of the wind should contain a continuous distribution of plasma
temperatures (e.g. Antokhin, Owocki & Brown 2004). We therefore
mimic such a distribution by using four plasma temperature com-
ponents (T1+T2+T3+T4) with fixed kT of 0.2, 0.6, 1.0, and 4.0 keV,
corresponding loosely to the peak emissivity of dominant spectral
features likely to be present in the ACIS-S bandpass (H-like and
He-like atoms of Ne, Mg, Si, S, and Fe). Given that these emissivity
functions generally extend over a broad range of temperatures, we
believe this approach is sufficient to model the characteristics of the
emission spectrum while minimizing the number of fitting parame-
ters (see discussion in Nazé et al. 2014). It is important to note that
other representations of the post-shock plasma (e.g. different com-
binations of temperatures and their associated emission measures)
can result in a similar emission spectrum, especially at the relatively
low resolution of ACIS-S. However, the goal of this analysis is to
investigate the global properties of the phase-dependent absorption,
and not the detailed distribution of emission measure.

We attenuate the total emission model spectrum described above
with the cold interstellar medium (ISM) absorption model tbabs

[ColdAbs×(4T)] of Wilms, Allen & McCray (2000). We adopt an
ISM column density N ISM

H = 0.48 × 1022 cm−2, determined from
E(B − V) = 0.804, RV = 3.74 (W12b), which results in AV = 3.01
(Güver & Özel 2009).

In addition to this ‘ISM only’ model, we consider the possibility
of extra local circumstellar absorption (‘LOC’) in two ways. First,
we consider an additional cold absorption (‘Cold LOC’) with the
same absorption model as the ISM [ColdAbs×(ColdAbs×(4T))].
Secondly, we consider the possibility that this additional absorber is
composed of warm wind material at near the ∼35 kK effective tem-
perature of the star (‘Warm LOC’; [ColdAbs×(WarmAbs×(4T))]).
Because H and He are mostly ionized at this temperature, the
wavelength-dependent opacity will be different than for a cold ab-
sorber model, transmitting more flux at lower energies. We therefore
use the model slabtabs provided in the contributed XSPEC package
WINDPROFILE.3 Slabtabs models absorption by a simple slab of ion-
ized material, with elemental abundance and ionization balance cho-
sen for the application, and using opacities from Verner & Yakovlev
(1995) as implemented by Leutenegger et al. (2010). We use their
opacity model calculated for a generic O-type star wind with solar
abundances (see their fig. 6).

We consider a simplified geometric model where the absorber
is located between the emission site and the observer. In this case,
the attenuation goes as e−τλ , where τλ is the wavelength-dependent
optical depth. It is likely that the sites of X-ray emission are em-
bedded within the warm wind material. Such geometric models
exist for spherically symmetric non-magnetic winds (e.g. windtabs;
Leutenegger et al. 2010), however they might not be readily applica-
ble here given that a magnetosphere is not expected to be spherically
symmetric.

We proceed to model the observations using two different ap-
proaches, which correspond to the results presented in the following
two subsections.

(i) In the simplest case (‘individual models’), we let all model
parameters (column density nHLOC and the distance-weighted emis-
sion measure EMi associated with each temperature component)
vary independently from one observation to the other. More specif-
ically, this assumes that the plasma temperature distribution (the 4T
components) can differ from one epoch to another. This could be
due to intrinsic changes in the temperature distribution with time,
or by occultation of spatially stratified temperature distribution (see
below).

(ii) The spectral variations of magnetic stars are usually under-
stood to be due to a change in the observer’s viewing angle as the
tilted magnetosphere corotates with the stellar surface. Although
these magnetospheres are dynamic in nature, there are many in-
dications that their volume-integrated properties are quite stable,
namely based on numerical simulations (ud-Doula et al. 2013), on
observational diagnostics (Howarth et al. 2007; Townsend et al.
2013), and on the lack of short-term variability observed here. With
this picture in mind, we therefore do not expect the intrinsic X-ray
emissivity of the magnetosphere itself to change significantly in
time, but rather its sky-projected structure to modulate with the ro-
tational phase. We thus also attempt to simultaneously model both
epochs with a common 4T emission model (‘Joint models’). We
allow for a change in the overall flux of the emission model spec-
trum during the low state [Constant×(4T)] to account for a possi-
ble occultation of the circumstellar X-ray emitting plasma by the

3 http://heasarc.nasa.gov/xanadu/xspec/models/windprof.html

MNRAS 453, 3288–3299 (2015)

 at Sw
arthm

ore C
ollege on M

arch 30, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://heasarc.nasa.gov/xanadu/xspec/models/windprof.html
http://mnras.oxfordjournals.org/


X-ray emission from NGC 1624-2 3293

Figure 6. Individual fits to the low state (left) and the high state (right). The emission component of the model is a four-component fixed-temperature APEC

spectrum (0.2, 0.4, 1.0, and 4.0 keV). The absorption models are a cold ISM only (thin red), a cold ISM plus cold local absorption (green), and a cold ISM plus
warm local absorption (thick blue). The three lower panels show, from top to bottom, the best fit for each attenuation model, the best-fitting local absorption
component without the ISM absorption, and the best-fitting emission component (APEC only; no ISM/LOC absorption). Note the prominent Mg and Si spectral
features between 1 and 2 keV, that can only be reproduced with a relatively cool plasma component.

stellar disc when the magnetic field is seen near equator-on (Gagné
et al. 2005). Since the column density depends on the ray’s path,
and therefore on the viewing angle, the local absorption is also al-
lowed to differ between the two epochs. This, however, makes the
simplifying assumption that there is no strong spatial gradient of
plasma temperature inside the magnetosphere, which would require
more precise models to constrain. In summary, the seven fitted pa-
rameters for the joint model are the column densities for the low
and high states, the distance-weighted emission measure associated
with each temperature component, and a flux reduction factor f for
the low state.

5.1 Results from individual models

We fit the individual models, with the three different absorption
models (‘ISM only’, ‘Cold LOC’, and ‘Warm LOC’), to each ob-
servation independently. The top panels of Fig. 6 show the best-
fitting model spectra folded through the ACIS-S response function
(red, green, and blue lines) overlaid on the observed spectra (grey
histogram). The three bottom panels show, from top to bottom, as
follows. (i) The attenuated model spectra as would be seen from
Earth, with dominant spectral features identified. (ii) The model

spectra corrected for the ISM absorption, as emergent from the
magnetosphere. (iii) The emission model spectra (4T components;
essentially both ISM and LOC corrected) associated with these
best-fitting models.

The fit results are compiled in Table 3. Columns 1–3 describe
the absorption model under consideration. Columns 4–7 give the
normalization of each T component, and column 8 gives the mean
plasma temperature weighted by this normalization. The energy
fluxes in column 9 are calculated by integrating the model spectra
between 0.3 and 10.0 keV. We also parametrize the relative hardness
of the model spectra by measuring a flux hardness ratio (column 10)
that compares soft (0.3–2.0 keV) and hard (2.0–10.0 keV) bands.
The reduced χ2 of the model fits are given in column 11. We also
provide the reduced χ2 values that correspond to the 1σ , 2σ , and 3σ

confidence intervals for the degrees of freedom of each observation
(23 and 33 for low state and high state, respectively).

In the second part of Table 3, we compile the characteristics
of the ISM-corrected model spectra (columns 12–15), and those
of the emission 4T model spectra (columns 16–19). In addition to
the flux and hardness ratio described above, we also calculate the
associated luminosity in the X-ray band log (LX) and the ratio of the
X-ray luminosity to the bolometric luminosity log (LX/Lbol).
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Table 3. Individual models (shown in Fig. 6). The distance-weighted emission measure normalization of the APEC components (EMi) are in units of
10−14 cm−5. These should be multiplied by 4πd2 to be converted into volume emission measures in cm−3. We here compile these factors with a greater
accuracy than their typical formal modelling uncertainty, in order for our model spectra to be reproducible. The formal error on the Earth-observed flux is of
the order of 1 × 10−14 erg s−1 cm−2. All other quantities are given to the significant digit.

Model nHISM nHLOC EM1 EM2 EM3 EM4 kTavg Flux H/S χ2
red

(1022cm−2) (1022cm−2) (0.2 keV) (0.6 keV) (1.0 keV) (4.0 keV) (keV) (erg s−1cm−2)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Low state χ2
red (1σ ,2σ ,3σ )=1.12, 1.55, 2.00 for 23 DF

ISM only 0.48 0 3.59E-06 0 0 4.06E-05 3.7 4.7E-14 2.5 2.12
Cold LOC 0.48 1.78 ± 0.50 6.83E-04 4.28E-05 6.14E-05 3.18E-05 0.4 4.6E-14 2.3 1.52
Warm LOC 0.48 3.93 ± 0.73 1.91E-03 9.85E-09 1.12E-04 2.71E-05 0.3 4.6E-14 2.0 1.14

High state χ2
red (1σ ,2σ ,3σ )=1.10, 1.45, 1.81 for 33 DF

ISM only 0.48 0 0 0 4.14E-06 5.82E-05 3.8 7.0E-14 2.3 1.09
Cold LOC 0.48 0.92 ± 0.44 1.78E-04 2.33E-05 3.65E-05 5.61E-05 1.1 7.1E-14 2.3 0.82
Warm LOC 0.48 1.96 ± 0.46 5.71E-05 3.34E-05 4.98E-05 5.46E-05 1.5 7.1E-14 2.2 0.79

ISM corrected Emission component only

Model Flux H/S log (LX) log (LX/Lbol) Flux H/S log (LX) log (LX/Lbol)
(erg s−1 cm−2) (erg s−1) (erg s−1 cm−2) (erg s−1)

(1) (12) (13) (14) (15) (16) (17) (18) (19)

Low state

ISM only 7.0E-14 1.0 32.3 −6.3 7.0E-14 1.0 32.3 −6.3
Cold LOC 5.5E-14 1.5 32.2 −6.4 1.1E-12 0.04 33.6 −5.1
Warm LOC 7.3E-14 0.8 32.4 −6.3 2.6E-12 0.02 33.9 −4.8

High state

ISM only 1.0E-13 1.0 32.5 −6.2 1.0E-13 1.0 32.5 −6.2
Cold LOC 9.0E-14 1.3 32.5 −6.2 4.4E-13 0.1 33.1 −5.5
Warm LOC 9.6E-14 1.1 32.5 −6.2 3.4E-13 0.2 33.0 −5.7

From these models, we reach the following conclusions.

(i) For both observations, the models without local absorp-
tion (ISM only) provide a poorer fit than those with extra local
absorption.

In the case of the low state, the improvement in the fit is sta-
tistically significant. In the case of the high state, all three models
are within the 1σ confidence interval. Indeed, the emission spectra
(bottom panels of Fig. 6) and fluxes (column 16 of Table 3) of the
different models are more similar during the high state observation
than during the low state observation.

The need for this local absorption component can be understood
by the fact that a hot plasma component is necessary to explain the
hard (>3 keV) tail of the observed spectra. However, the model
only absorbed by the ISM material is too hot (kTavg � 3.7 keV)
to accurately reproduce the very prominent Mg and Si features,
which have peak emissivities at cooler temperatures (log T � 6.8
and 7.0 or kT � 0.5 and 0.8 keV, respectively). The inclusion of a
cooler component with a stronger emission measure to model the
Mg and Si features cannot reproduce the lack of flux at low energy
(<0.8 keV) without the presence of additional absorption.

(ii) During both epochs, the amount of local absorption is very
large.

One explanation for this result could be that the ISM column
density has been underestimated. However, the AV corresponding
to these additional column densities would be 11 ± 3 mag and 6 ±
3 mag for the low and high state, respectively. Even during the high
state, this difference is larger than the uncertainties on the reddening
determined by W12b (see Table 1). It is therefore rather unlikely
that the extra absorption is of interstellar origin.

The two models with cold and warm circumstellar absorption
result in statistically similar fits. If we consider the likely hypothesis
that this absorption is the result of warm, ionized material trapped
in the magnetosphere, the column densities needed to reproduce the
observed spectra are quite large. As a base for comparison, although
the expected wind geometry is different, such a column density
would rival the characteristic column density for the non-magnetic
early-O supergiants ζ Pup or HD 150136 (see table 1 of Leutenegger
et al. 2010). However, as pointed out by W12b, NGC 1624-2 has
by far the largest Hα equivalent width of all the magnetic O-type
stars, implying a greater amount of magnetospheric plasma.

(iii) There are large differences in the emission model spectra
when comparing the low and high state observations considering
the same absorption model.

The model spectra in the low state are softer than in the high
state, as shown in Table 3 by the hardness ratio in column 17 and
the kTavg in column 8. The flux of the emission component is higher
during the low state by a factor 3–5. The conclusion is the same
when considering a cold or a warm circumstellar absorption. The
emission spectra corresponding to a different absorption model for
a given observation are only slightly different, as can be seen by
comparing the green and blue curves in the bottom panels of Fig. 6
(also column 16 and 17 of Table 3), the fluxes and the spectral
hardness are different by a factor of �2.

Such a result would be difficult to explain in terms of occultation
of a spatially stratified temperature distribution. As discussed in
the following section, simultaneously modelling both epochs with
a common emission model provide a slightly poorer but still ad-
equate fit to the observations. A high-resolution X-ray spectrum
of NGC 1624-2 would provide a useful constraint for the detailed
properties of the magnetosphere emission processes.
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Table 4. Same as Table 3 for joint models (Fig. 7 shows a comparison between the joint and individual models for the warm local absorption case).

Model nHISM nHLOC EM1 EM2 EM3 EM4 kTavg Flux H/S χ2
red

(1022 cm−2) (1022 cm−2) (0.2 keV) (0.6 keV) (1.0 keV) (4.0 keV) (keV) (erg s−1 cm−2)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Low state χ2
red (1σ ,2σ ,3σ )=1.12, 1.55, 2.00 for 23 DF

ISM only 0 4.6E-14 2.5 2.28
Cold LOC 1.41 ± 0.36 4.9E-14 2.6 1.68
Warm LOC 3.02 ± 0.40 4.9E-14 2.4 1.35

High state χ2
red (1σ ,2σ ,3σ )=1.10, 1.45, 1.81 for 33 DF

ISM only 0.48 0 0 0 1.57E-06 6.25E-05 3.9 7.3E-14 2.496 1.13
Cold LOC 0.48 1.13 ± 0.36 3.57E-04 3.83E-05 4.63E-05 5.06E-05 0.7 6.8E-14 2.077 0.85
Warm LOC 0.48 2.61 ± 0.40 4.39E-04 3.61E-05 8.29E-05 4.61E-05 0.6 6.8E-14 1.994 0.86

ISM corrected Emission component only

Model Flux H/S log (LX) log (LX/Lbol) Flux H/S log (LX) log (LX/Lbol)
(erg s−1 cm−2) (erg s−1) (erg s−1 cm−2) (erg s−1)

(1) (12) (13) (14) (15) (16) (17) (18) (19)

Low state

ISM only 6.5E-14 1.1 32.3 −6.4 0.6 Fhigh 32.3 −6.4
Cold LOC 5.9E-14 1.7 32.3 −6.4 0.8 Fhigh 33.2 −5.4
Warm LOC 6.7E-14 1.1 32.3 −6.4 0.8 Fhigh 33.3 −5.3

High state

ISM only 1.0E-13 1.1 32.5 −6.2 1.0E-13 1.1 32.5 −6.2
Cold LOC 8.6E-14 1.3 32.4 −6.2 7.1E-13 0.08 33.4 −5.3
Warm LOC 1.0E-13 0.9 32.5 −6.2 8.7E-13 0.07 33.4 −5.2

(iv) The X-ray emission of NGC 1624-2 is very luminous, and
heavily attenuated.

Depending on the characteristics of the additional absorption
component, the emergent (ISM corrected) X-ray luminosities be-
tween 0.3 and 10 keV are log (LX) ∼ 32.3 and 32.5 for the low
state and high state, corresponding to log (LX/LBol) of −6.3 and
−6.2, respectively, similar to what is seen in other magnetic O-type
stars (Nazé et al. 2014). These models also imply that the shock-
heated material produces high intrinsic X-ray fluxes, corresponding
to roughly log (LX) of ∼33.7 and ∼33.0, or log (LX/LBol) of −5.0
and −5.6. This would imply that 70–95 per cent of the Magnet-
ically Confined Wind Shock (MCWS)-produced X-ray emission
is absorbed before escaping the magnetosphere. As a comparison,
Cohen et al. (2011) determined that 80 per cent of X-ray emission
produced in the wind of the non-magnetic star HD 93129A, one of
the earliest known O stars with a mass-loss of nearly 10−5 M� yr−1,
is absorbed before escaping the wind. We consider the values de-
rived here to be first-order estimates, as the geometry of the models
might be too simplified to accurately describe the structure of a real
magnetosphere.

5.2 Results from joint modelling

Let us now turn our attention to the joint models described previ-
ously, where the 4T emissivity model is constrained to simultane-
ously fit both low and high state spectra, allowing only for a change
in overall flux reduction during the low state to account for the oc-
cultation of the shock-heated plasma by the stellar disc. The results
of these joint fits, for the three absorption models, are compiled in
Table 4. The blank entries represent values that were kept common
between the two epochs.

Once again the models with extra local absorption better repro-
duce the observed spectra, in a statistically significant way for the
low state (see column 11). The joint models provide marginally
poorer fits than the individual models, although all the models

including local absorption are within the 2σ confidence interval.
Fig. 7 shows a comparison of the best individual models and the
joint model for the warm local absorption model. During the low
state (left-hand panel), the joint emission model spectrum (bottom,
in thick blue) is harder than the best individual emission model (in
thin red). During the high state (right-hand panel), the joint emission
model spectrum is softer than the best individual emission model
(in thin green). This can also be seen by comparing the hardness
ratios of the emission models (column 17) and kTavg (column 8) of
Table 3 and 4.

Because of these differences in emission model spectra between
the individual and joint approach, the joint model for the low state
requires less absorption to reproduce the lack of soft flux (and
slightly underestimates the flux in the Mg and Si features) compared
to the individual models. The opposite effect is seen for the high
state. This leads to a less pronounced difference in the column
density of the local absorption between the two epochs (column 3).

Given the similar quality of the fits from the individual and joint
models, the emergent, ISM-corrected fluxes and luminosities are
similar (columns 12 and 14). Considering now the models with lo-
cal absorption, the intrinsic flux of the emission component during
the high state (column 16) is higher than for the individual models by
a factor ∼2, leading to an intrinsic luminosity of log (LX) ∼ 33.4.
With this simplified model, the best value for the flux reduction
(Fmin ∼ 0.8 Fmax) during the minimum phase implies that the stellar
disc must therefore occult ∼20 per cent of the X-ray emitting mate-
rial when the magnetosphere is seen close to edge-on. In addition,
the circumstellar material attenuates 85–90 per cent of the X-ray
emission at both phases.

6 D I SCUSSI ON

In the pioneering work of Babel & Montmerle (1997a), the
X-ray luminosity originating from magnetically confined wind
shocks fundamentally scales linearly with wind mass-loss rate,
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Figure 7. Joint fit of the minimum phase (left) and the maximum phase (right) using a common emission model for both epochs, composed of a four-temperature
APEC model (with components at 0.2, 0.4, 1.0, and 4.0 keV). Only the overall normalization of the emission spectrum is allowed to change between the epochs.
The absorption model shown here is the ‘cold ISM with warm local absorption’ model. The best-fitting joint model is shown in thick blue, compared with the
best fits to the observations taken individually from Fig. 6 (in thin red for the low state and thin green for the high state) for the same absorption model. The
top panel shows the models folded through the instrumental response compared to the data, and the bottom panels shows the models, the models corrected for
the ISM absorption, and the emission models (i.e. 4T only).

because the thermal energy content of the radiating post-shock
plasma depends on the wind kinetic energy flux across the mag-
netically channelled shock front. This model was recently refined
by ud-Doula et al. (2014), who combined MHD simulations and
analytical scalings taking into account the effects of instrument-
specific bandpass and ‘shock retreat’.

Shock retreat occurs in low-density environments, where the
cooling length of the shocked material becomes comparable to the
length of the magnetic loop. In this case, the X-ray emission is
expected to be spatially extended above and below the magnetic
equator, which lowers the pre-shock velocity and thus the kinetic
energy available to power the shocks.

The overall importance of the shock-retreat effect can be char-
acterized by the cooling parameter defined in equation (25) of ud-
Doula et al. (2014):4

χ∞ ≈ 0.034
v4

8R12

Ṁ−6
, (1)

4 It is important to note that the models of ud-Doula et al. (2014) are
parametrized by the mass-feeding rate at the base of an unperturbed wind,
which is not the same as the actual mass-loss ultimately lost by the star.

where v8 ≡ v∞/(108 cm s−1), R12 ≡ R�/(1012 cm), and Ṁ−6 ≡
Ṁ/(10−6 M� yr−1). The case where χ > 1 corresponds to a regime
where shock retreat is important. The case where χ < 1, represents
a regime with dense conditions where the cooling length is small
compared to the size of the magnetic loop, and the X-ray emission
remains from near the loop apex at the magnetic equator.

Using the values listed in Table 1, we find χ∞ ∼ 10 for
NGC 1624-2, implying a moderately strong shock retreat, with
associated moderation of X-ray emission level and hardness. Given
the strong dependence on the rather uncertain wind terminal speed,
a slight reduction to a lower v∞ value could result in a cooling
parameter as low as unity, but likely not much lower. Fig. 8 shows
the expected spatial distribution of the integrated X-ray emission
between 0.3 and 10 keV from the analytical models described by
ud-Doula et al. (2014), for the χ∞ = 1 and χ∞ = 10 cases (see also
Owocki et al., in preparation). Although the latitudinal distribution
of the X-ray emission is strongly dependent on χ∞, its radial extent
is concentrated relatively close to the star (∼1.5–3 R�), independent
of χ∞ as well as the closure radius, located near RA. This can be
understood as due to the competition between the increase of the
velocity shock jump with distance from the stellar surface, and the
density decrease due to the areal divergence of the field loop.
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Figure 8. Relative spatial distribution of the X-ray emission according to
the analytical models of ud-Doula et al. (2014, see their appendix A) for
cooling parameters χ∞ = 1 (top) and χ∞ = 10 (bottom). The shock retreat
distributes the X-ray emission over a wider range of latitude. However, the
bulk of the X-ray emission is always located relatively close to the star, even
for large closure radius (here 4R�).

Our joint modelling of the NGC 1624-2 spectra suggests that
the stellar disc occults ∼20 per cent of the X-ray emitting mate-
rial. Using a simple geometric model where the X-ray emission
originates from a ring concentrated at a single radius RX, the max-
imum occultation (when the magnetosphere is perfectly edge-on)
can be expressed as

f ≡ Fobs

Ftot
= 1 − 1

π
sin−1

(
R�

RX

)
. (2)

Fig. 9 shows the constraints on RX from this simple occultation
model, suggesting that the bulk of the X-ray emission is indeed
generated relatively close to the star (∼2R�), compared to the extent
of the largest closed magnetic loops (∼10R�).

In the idealized limit of 100 per cent shock efficiency, the scaling
analysis presented by ud-Doula et al. (2014) predicts a theoretical
X-ray emission for NGC 1624-2 of log (LX) = 34.4 in the 0.3–
10 keV bandpass. By comparison, the empirical analysis presented
here gives a factor ∼10 lower luminosity for the intrinsic emission
component in this bandpass (e.g. log LX = 33.4 for the joint model
with warm local absorption). This indicates a shock efficiency factor
of ∼10 per cent, in good agreement with the estimates obtained from
comparison with MHD simulations (ud-Doula et al. 2014), and also
suggested by observations of magnetic massive stars (Nazé et al.
2014). This supports our conclusion that the X-ray emission from
NGC 1624-2 is highly attenuated, with an amount similar to what
is seen in the winds of much earlier non-magnetic O-type stars.

Figure 9. Reduction of the observed emission (f = Fobs/Ftot) caused by the
occultation by the stellar disc of a ring of X-rays located at a radius RX (black
thick curve). The thin middle line and shaded area show the constraints
obtained by the joint modelling with the ‘warm’ circumstellar absorption.
This supports the notion that the bulk of the X-rays are emitted relatively
close to the stellar surface, as compared to the radius of the outermost closed
loops (see text for details).

The high intrinsic X-ray luminosity of NGC 1624-2 is therefore
consistent with the strong X-ray emission seen in other magnetic
O-type stars. Empirically, the observed spectrum of NGC 1624-2
is hard like that of θ1 Ori C; but intrinsically it is softer, making it
more similar to the other Of?p stars. On the other hand, NGC 1624-
2 is distinguished from the other Of?p stars by its large (phase-
dependent) absorption, due to its spatially large magnetosphere.

Direct MHD simulations for high degrees of magnetic wind con-
finement, as are needed for NGC 1624-2, are not computationally
feasible at this time, although new developments in rigid-field hy-
drodynamics models might be available in a near future (Townsend,
Owocki & ud-Doula 2007; Bard & Townsend 2015). However, we
can use the 3D MHD simulation presented by ud-Doula et al. (2013)
for a lower magnetic wind confinement, similar to that found for
other magnetic O-type stars, as a baseline to explore the level and
modulation amplitude of X-ray absorbing column densities.

Fig. 10 shows contour plots of the column density NH, time-
averaged over 50 ks, between any location in the magnetic equa-
torial plane and the observer. The right-hand panel corresponds to
the high state, when the magnetosphere is viewed pole-on. The ob-
server is therefore located in front of the page. The left-hand panel
corresponds to the low state, when the magnetosphere is viewed
edge-on – the observer is therefore located at the top of the page
and viewing in the plane of the page towards the bottom. The grey
region at the bottom marks the occultation of a portion of the equa-
torial plane by the stellar disc. The green dashed circles mark 2R�,
the expected location of the bulk of the X-ray emission.

This 3D simulation predicts a column density between 0.1 and 0.5
× 1022 cm−2 between the observer and X-ray emission originating
at ∼2R�. This is consistent with the low absorption column observed
in other magnetic O-type stars (e.g. Gagné et al. 2005; Nazé et al.
2014). Regions of higher column density exist along the green circle
for the low state on the far side of the magnetic equatorial plane, but
these regions are already occulted by the stellar disc. It is therefore
likely that no large changes in absorption will be observed for stars
with magnetospheres significantly smaller than that of NGC 1624-2.
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Figure 10. Time-averaged (50 ks) column density nH between any location on the magnetic equatorial plane and the observer, calculated from the 3D
MHD simulation presented by ud-Doula et al. (2013) for a low magnetic wind confinement, similar to that found for other magnetic O-type stars. In both
panel, the magnetic equatorial plane is in the plane of the page, and the magnetic pole is out of the page. The right-hand panel correspond to the high state when
the magnetosphere is viewed pole-on (the observer is located in front of the page), and the left-hand panel correspond to the low state when the magnetosphere
is viewed edge-on (observer is located at the top of the page, looking into the page). The grey circle is the stellar disc and the grey zone at the bottom of the
right-hand panel marks regions occulted by the stellar disc. The dashed green circle is located at 2R�.

The empirical column density for NGC 1624-2 is higher (1–4
× 1022 cm−2), which, in these simulations, only occurs for rays
that impact very close to the star. A suitably larger magnetosphere
could produce such a larger attenuation, as a larger fraction of the
wind will be channeled into closed magnetic loops, increasing the
overall column density. An extension of the X-ray scaling analysis
of ud-Doula et al. (2014) to account for the spatial distribution
of pre-shock and cool post-shock material could help quantify the
X-ray absorption for large magnetospheres, currently out of reach
of present MHD simulations (Owocki et al., in preparation).

7 C O N C L U S I O N

We observed NGC 1624-2, the O-type star with the largest known
magnetic field (Bp ∼ 20 kG) using the ACIS-S camera on-board the
Chandra X-ray Observatory. Our two observations were obtained
at the low and high state of the periodic Hα emission cycle, cor-
responding to the rotational phases where the magnetic field is the
closest to equator-on and pole-on, respectively.

In both observations most of the photon counts have energies
higher than 0.8 keV. No evidence of short-term variability is found
within each exposure. However, the net photon flux is 40 per cent
higher during the Hα emission high state, which shows an excess
of softer (∼1 keV) photons compared to the low state.

We model the spectra with optically thin, collisional radiative
plasma models from the APEC. We find that for both observations a
large local magnetospheric absorption, in addition to that from the
ISM, provides a much better fit to the features present in the spectra.

The X-ray emission of NGC 1624-2 is therefore very luminous,
and heavily attenuated, by ∼70–95 per cent. Therefore, although the
spectrum of NGC 1624-2 appears hard like that of the archetypical
magnetic star θ1 Ori C, it is in fact intrinsically softer and more

similar to the other magnetic Of?p stars. However, the large amount
of circumstellar absorption present in NGC 1624-2 is not seen in any
of the other magnetic stars. We argue that such a high attenuation,
and its observed variation with stellar rotation, is consistent with a
larger magnetic closure radius, within the framework of a dynamical
magnetosphere in the Magnetically Confined Wind Shock X-ray
context, and consistent with its remarkably strong magnetic field.

The case of NGC 1624-2 also revealed that the plasma post-
shock temperature, and therefore the intrinsic X-ray spectral hard-
ness, should not depend on the confinement level. The question
thus remains as to why the emission of the archetype magnetic
O-type star θ1 Ori C is harder than that of the other magnetic O-
type stars observed in X-rays. Upcoming HST/COS observations
will address the ionization structure and kinematics of the plasma,
as well as the feeding and mass-loss rates of the giant magnetosphere
of NGC 1624-2. These new observations may reveal important in-
formation about the pre-shock wind velocity, that can be compared
to θ1 Ori C to verify whether the velocity structure of the magneto-
sphere is responsible for this difference is plasma temperature.
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Leutenegger M. A., Cohen D. H., Zsargó J., Martell E. M., MacArthur J. P.,
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