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Abstract A dynamic balance between strong excita-

tory and inhibitory neuronal inputs is hypothesized to

play a pivotal role in information processing in the

brain. While there is evidence of the existence of a bal-

anced operating regime in several cortical areas and ide-

alized neuronal network models, it is important for the

theory of balanced networks to be reconciled with more

physiological neuronal modeling assumptions. In this

work, we examine the impact of spike-frequency adap-

tation, observed widely across neurons in the brain, on

balanced dynamics. We incorporate adaptation into bi-

nary and integrate-and-fire neuronal network models,

analyzing the theoretical effect of adaptation in the

large network limit and performing an extensive nu-

merical investigation of the model adaptation param-

eter space. Our analysis demonstrates that balance is
well preserved for moderate adaptation strength even if

the entire network exhibits adaptation. In the common

physiological case in which only excitatory neurons un-

dergo adaptation, we show that the balanced operating

regime in fact widens relative to the non-adaptive case.

We hypothesize that spike-frequency adaptation may

have been selected through evolution to robustly facil-

itate balanced dynamics across diverse cognitive oper-

ating states.
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1 Introduction

There is strong experimental evidence that individual

neurons across the brain demonstrate highly irregu-

lar and asynchronous firing activity, but the basis for

this variability remains a subject of intense investiga-

tion (Shadlen and Newsome 1998b; Britten et al. 1993;

London et al. 2010; Compte et al. 2003). This irregu-

lar activity facilitates rich neuronal network computa-

tions and has been shown to foster predictive neuronal

coding, efficient representation of stimuli, and effective
short-term memory (Shadlen and Newsome 1998a; Sus-

sillo and Abbott 2009; Whalley 2013). Considering bio-

physical sources of noise are largely unable to account

for irregular neuronal dynamics (Softky and Koch 1993;

Faisal et al. 2008), there is robust evidence that neu-

ronal network topology and strong neuronal interaction

together are sufficient to give rise to the irregular activ-

ity observed in vivo even in the absence of variability

in external network inputs.

The theory of balanced networks indicates the exis-

tence of an irregular operating regime in which strong

excitatory and inhibitory neuronal inputs are dynam-

ically balanced, typically rendering neurons in a near-

firing state such that firing events are caused by fluc-

tuations in neuronal input (van Vreeswijk and Som-

polinsky 1996; Troyer and Miller 1997; Vogels and Ab-

bott 2005; Miura et al. 2007). Theoretical analysis of

the balanced operating state demonstrates that when

temporal fluctuations in neuronal input are approxi-

mately as strong as the mean input, neuronal firing
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rates in a balanced network are broadly distributed

while maintaining asynchronous dynamics and nearly

constant population-averaged activity. Supporting the

existence of a balanced state in physical neuronal net-

works, experimental studies indicate that in several

brain regions excitatory and inhibitory inputs are in-

deed closely tracked over time, with the ratio of excita-

tory to inhibitory conductances remaining nearly con-

stant both in vivo and in vitro (Wehr and Zador 2003;

Shu et al. 2003; Atallah and Scanziani 2009; Xue et al.

2014).

Crucial to the robustness of the theory of balanced

networks is that it generalizes to both experimental

settings and detailed neuronal network models. Neu-

ronal network models demonstrating balanced dynam-

ics are generally sparsely connected and exhibit rela-

tively strong synaptic connections, which are charac-

teristics well supported physiologically (Markram et al.

1997; Mason et al. 1991; He et al. 2007; Achard and

Bullmore 2007; Destexhe et al. 2003), but current theo-

retical work largely utilizes minimal single neuron mod-

els for analytical tractability in studying the persis-

tence of balanced dynamics (Boerlin et al. 2013; Litwin-

Kumar and Doiron 2012; Mongillo et al. 2012; Renart

et al. 2010; Deneve and Machens 2016). In examining

the robustness of the balanced network theory, a ques-

tion that naturally arises is whether balanced dynam-

ics are preserved in the face of more realistic neuronal

modeling assumptions.

One salient feature of single neuron dynamics found

widely across the brain is a decrease in firing rate over

time in response to a constant stimulus known as spike-

frequency adaptation (Brown and Adams 1980; Benda

and Herz 2003; Barranca et al. 2014a). Spike-frequency

adaptation may serve a number of significant functional

roles, particularly in stimulus selection, decision mak-

ing, and population coding (Benda et al. 2005; Peron

and Gabbiani 2009; Kilpatrick and Ermentrout 2011),

and has profound consequences on the dynamical char-

acteristics of neurons, including their bifurcation struc-

ture and bursting propensity (van Vreeswijk and Hansel

2001; Stiefel et al. 2009).

To examine the robustness of the balanced net-

work theory and further characterize the implications

of spike-frequency adaptation, we examine the exis-

tence of the balanced state in neuronal network models

incorporating spike-frequency attenuation. Our work

shows that when the entire neuronal network under-

goes adaptation, balanced dynamics persist even for

moderately strong adaptation. Using mean-field anal-

ysis and a long-time approximation of the model dy-

namics, we derive theoretical bounds on the network

parameters necessary for balanced dynamics, highlight-

ing the impact of adaptation strength on the parameter

regime in which neuronal dynamics are balanced. We

also perform an exhaustive exploration of the adap-

tation parameter space, investigating several relevant

metrics of balance as a function of adaptation strength.

For concreteness, we initially examine a binary network

model (van Vreeswijk and Sompolinsky 1996), and later

demonstrate how our analysis generalizes to a pulse-

coupled integrate-and-fire (I&F) network model (Corral

et al. 1995; Mather et al. 2009; Barranca et al. 2014b).

This work shows that the balanced state theory

is indeed consistent with more realistic neuronal dy-

namics, underlining a generalizable framework for po-

tential verification of balanced dynamics in novel neu-

ronal models. Importantly, we show that in the case

when only the excitatory neuron population demon-

strates spike-frequency attenuation, balanced dynam-

ics are preserved for strong adaptation well above the

strength generally observed in vivo and for a broader

range of model parameters. This result is consistent

with experimental evidence that excitatory neurons are

generally more likely to undergo adaptation than in-

hibitory neurons (La Camera et al. 2006; Augustin et al.

2013). We therefore conjecture that adaptation in exci-

tatory neurons may in fact function as a potential mech-

anism for fostering balanced dynamics among neuronal

populations.

The remainder of the paper is organized as follows.

We first formulate the binary network model incorpo-

rating spike-frequency adaptation in Section 2 and then

we perform mean-field analysis on the model in Sec-

tion 3, deriving conditions on the neuronal inputs in

the large network and long time limits necessary for

balanced dynamics. In Section 4, we derive theoreti-

cal bounds on the model parameters required for bal-

anced activity, analyzing in detail the specific impact

of adaptation strength. We also consider the physiolog-

ical case in which only the excitatory population un-

dergoes adaptation in Section 5, demonstrating adap-

tation broadens the parameter regime over which the

dynamics are balanced. In Section 6, we numerically

investigate the spike attenuation parameter space and

its impact on the model network dynamics, generaliz-

ing these results to integrate-and-fire network models

with adaptation in Section 7. Finally, in Section 8, we

discuss our findings, their implications, and potential

related areas of future investigation.

2 Binary Model with Spike-Frequency

Adaptation

We first introduce spike-frequency adaptation into the

framework of a binary neuronal model analogous to the
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Ising model of ferromagnetism in statistical mechanics

(Glauber 1963; van Vreeswijk and Sompolinsky 1996).

As the name suggests, in this model each neuron has

two major states, firing (σ = 1) or quiescent (σ = 0).

The network is composed of N neurons, such that NE
are excitatory and NI are inhibitory, requiring that for

balanced dynamics these two subpopulations interact

such that firing events are largely the result of input

fluctuations of strength comparable to the mean input.

The state of the ith neuron in the kth population at

time t is prescribed by the below dynamical system

(subscripts k = E and k = I denote excitatory and

inhibitory neurons, respectively)

σik(t) = H
(
µik(t)− θik(t)

)
, (1)

where H(·) denotes the Heaviside function, µik(t) is the

total input into the neuron at time t, and θik(t) is the

firing threshold for the ith neuron in the kth population

at time t. The total synaptic drive into the ith neuron

in the kth population at time t is

µik(t) =

NE∑
j=1

RijkEσ
j
E(t) +

NI∑
j=1

RijkIσ
j
I(t) + µ0

k, (2)

where Rijkl denotes the recurrent connection strength

between the ith post-synaptic neuron in the kth popu-

lation and the jth pre-synaptic neuron in the lth popula-

tion and µ0
k is the strength of the external input into the

kth population. Note that the state of the neurons are

updated sequentially using a fixed step-size in numer-

ical simulation of this discrete dynamical system. The

state space reflects only the neuronal firing dynamics,

which encode the essential information for determin-

ing balanced dynamics, whereas the more physiological

integrate-and-fire model analyzed in Section 7 also re-

flects the subthreshold voltage dynamics.

To incorporate spike-frequency adaptation, we in-

clude in our modeling framework a dynamic fir-

ing threshold for each neuron rather than a static

population-based firing threshold as in classical bal-

anced network theory. This dynamic firing threshold

increases the neuronal excitation necessary for an ac-

tion potential, with the impact of multiple subsequent

spikes adding over time to yield an accumulated in-

crease in firing threshold and thus a cumulatively re-

duced firing frequency. From a physiological perspec-

tive, there are two primary slow currents that promote

spike-frequency attenuation through slow negative feed-

back to the neuronal excitability. The first is the nonin-

activating muscarinic potassium current and the second

is the after-hyperpolarization (AHP) current, which to-

gether largely determine the spike threshold and slope

of the neuronal voltage trace (Ermentrout et al. 2001;

Yamada et al. 1989). During an action potential, a large

number of voltage-gated and calcium-dependent ionic

channels open, facilitating a sharp rise in the adaptation

currents passing through the neuron. As these adapta-

tion currents slowly deactivate, their impact builds over

time following additional firing events and thereby re-

duces the neuronal spike frequency.

The use of a dynamic firing threshold in modeling

spike-frequency adaptation is ubiquitous in neuronal

models, generating negative correlations between the

durations of successive inter-spike intervals and repro-

ducing adaptive neuronal firing dynamics observed in

vivo (Treves 1993; Bibikov and Ivanitski 1985; Chacron

et al. 2000; Kobayashi 2009; Kobayashi and Kitano

2016). Alternative models of spike attenuation instead

directly incorporate the dynamics of the slow adap-

tation currents into the subthreshold voltage activity

(Benda et al. 2010; Barranca et al. 2014a; Fourcaud-

Trocme et al. 2003; Liu and Wang 2001). Hence, to

study the impact of spike-frequency adaptation on bal-

anced dynamics in the context of the binary neuron

model, which focuses on firing activity only, we intro-

duce a dynamic firing threshold to reflect adaptation,

and since the integrate-and-fire neuron modeling frame-

work incorporates subthreshold voltage activity as well

as firing dynamics, in Section 7 we also investigate the

dynamics of a current-based adaptation model. We ob-

serve strong qualitative agreement in the effect of spike-

frequency adaptation on balanced dynamics using the

two modeling frameworks.

Building upon the state space dynamics of the net-

work model given by Eqs. (1) and (2), the dynamic

firing threshold θik(t) for the ith neuron in the kth pop-

ulation evolves discretely according to

θik(t) = θk +
(
θik(t0)− θk + φF(uik(t))

)
e−λ(t−t0), (3)

where θk denotes the constant non-adapted firing

threshold for all neurons in the kth population, F (·)
denotes the firing rate indicator function, and t0 refers

to the closest preceding time at which the neuron fired.

The firing threshold for a given neuron in the kth pop-

ulation increases instantaneously by jump strength φ

each time it undergoes an action potential, and the

adaptation offset from default threshold θk decreases

exponentially in time with rate determined by λ. The

overall adaptation strength thereby increases with jump

strength φ and decreases with decay rate λ, and a quo-

tient of these two parameters, for example, could be

used to quantify the adaptation strength. Thus, for suf-

ficiently slow decay in the firing threshold, several suc-

ceeding firing events will result in a cumulative increase

in the firing threshold. However, in the absence of fir-



4 Victor J. Barranca et al.

ing events, a neuronal firing threshold will approach its

non-adapted threshold.

In prescribing the network architecture, we select

connection strength Rijkl to be Rkl/
√
K with probabil-

ity K/Nl and 0 otherwise, ignoring any detailed net-

work structure to mechanistically focus on the impact

of the single neuron dynamics. In this case, the excita-

tory connection strength RkE > 0 and the inhibitory

connection strength RkI < 0. Assuming sparse con-

nectivity, where 1 � K � NE , NI , each neuron re-

ceives on average K excitatory incoming connections

and K inhibitory incoming connections. Therefore, if

Rkl is O(1), then only O(
√
K) excitatory inputs are

necessary for a neuron to fire given an O(1) firing

threshold, reflecting strong recurrent connectivity as in

classical balanced network theory (van Vreeswijk and

Sompolinsky 1996). When the mean excitatory and in-

hibitory inputs into each neuron are in summation of

the same order as the firing threshold, intermittent fluc-

tuations in input are typically responsible for firing

events and also their strongly irregular distribution. We

derive conditions for balanced dynamics under these

modeling assumptions in Section 4. As the absolute

scale of the neuronal input is inconsequential in this

nondimensional model, we assume connectivity param-

eters REE = RIE = 1, so the only parameters that

determine the inhibition relative to excitation are the

inhibitory connection strengths and external input. We

also use the notation RE = |REI | and RI = |RII | to

quantify the magnitude of the inhibitory connections.

In requiring that irregular firing activity is the prod-

uct only of interactions among neurons in the net-

work, we assume the external input is constant and

with strength determined by parameter m0. Specifi-

cally, the constant external input into each population

is µ0
E = Em0

√
K and u0I = Im0

√
K, where E and I are

O(1) positive parameters controlling the net external

input into the excitatory and inhibitory populations,

respectively.

Before analyzing the impact of spike-frequency

adaptation, for contrast, we first summarize several

main dynamical features of a neuronal network in the

balanced operating regime. As depicted in Fig. 1(a), for

a representative neuron in a balanced network, the to-

tal excitatory and inhibitory inputs are much larger in

magnitude than the firing threshold, but the two input

types dynamically cancel over time, leaving the total

input only irregularly crossing threshold. This irregular

spiking activity with strong excitatory and inhibitory in-

puts dynamically counteracting produces a nearly con-

stant level of asynchronous neuronal activity across the

network, together characterizing the key features of the

balanced state considered in this work. We will later

use these key features as a means of benchmarking the

degree to which a network with spike-frequency adap-

tation is balanced.

On a network level, the population-averaged state,

or the mean activity, for the kth population mk(t) =
1
Nk

∑Nk
i=1 σ

i
k(t) is nearly constant and far below 1 across

time, demonstrating irregular fluctuations with small

temporal standard deviation about the time-averaged

mean activity mk. Across the network, the variance of

the inter-spike intervals is larger than the mean inter-

spike interval, signifying irregular firing activity. Thus,

a nearly stationary and asynchronous balanced state is

achieved, as demonstrated in Fig. 1(b). Similarly, for

each neuron in the network, the time-averaged ratio

between the total excitatory and total inhibitory in-

put into each neuron, which we will refer to as the EI

ratio, is primarily near −1. This indicates that on a

neuron-by-neuron basis the excitatory and inhibitory

inputs are nearly proportional and consequently well-

balanced such that the total input into each neuron is

near threshold. A histogram of the EI ratios across a

balanced network is given in Fig. 1(c). In this network,

the ratio of excitatory to inhibitory neurons is chosen

to be 4: 1 in accordance with estimates in the primary

visual cortex (Liu 2004; Gilbert 1992), and the remain-

ing network parameter choices are listed in the caption

of Fig. 1. It is important to note that our analysis is

largely not sensitive to the ratio of excitatory to in-

hibitory neurons as well as perturbations in specific pa-

rameter choices so long as they are in the subsequently

derived theoretical bounds.

3 Mean-Field Analysis

We now analytically examine the parameter regime for

which binary networks with spike-frequency adaptation

demonstrate balanced dynamics. A natural theoretical

requirement for a balanced operating state is that in the

large network limit the mean activity for both the exci-

tatory and inhibitory populations remains positive and

less than 1, implying the mean activity is constant with

asynchronous dynamics. Hence, we require 0 < mk < 1

as N → ∞ and as K → ∞ for fixed ratios NE/NI
and K/N . This requirement ultimately gives theoret-

ical bounds on the parameter space yielding balanced

dynamics independent of a specific network size in prac-

tice, requiring that a particular finite network realiza-

tion is composed of a sufficiently large number of inter-

connected excitatory and inhibitory neurons for these

bounds to apply approximately.

While in the absence of adaptation, this analysis is

given in van Vreeswijk and Sompolinsky (1998), in the

case of our adaptive binary model, we now must account
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Fig. 1 Dynamics of binary neurons in the balanced operating regime. (a) Excitatory (blue) and inhibitory (red) input into
a sample neuron in the balanced state. The total input (black) is dynamically balanced over time, leaving the net input near
threshold (dashed). (b) The population-averaged state (mean activity) of each neuron population over time. The mean activity
is nearly constant with irregular fluctuations and small temporal variance. (c) Histogram of the ratio between time-averaged
excitatory and inhibitory inputs across the neuronal network. The excitatory and inhibitory inputs are primarily proportional,
yielding a mean EI ratio near −1. Parameters are chosen such that N = 5000, NE = 4000, NI = 1000,K = 200, E = 1, I =
0.8, REE = RIE = 1, RII = −1.8, REI = −2,m0 = 0.5, θE = 1, and θI = 0.8.

for the dynamic nature of each individual neuronal fir-

ing threshold. Based on the requirement of stationarity,

we assume that when the network is in a balanced op-

erating regime, in the long-time limit the time-averaged

mean activity of each population is constant, given by

mk∞ for the kth population, and similarly require that

the long-time, time-averaged mean threshold for the kth

population, denoted θk∞ , is constant.

To approximate θk∞ , we first observe using induc-

tive reasoning that we may compute the firing threshold

for the ith neuron in the kth population after n integer

observation times as

θikn = θik0 +

n∑
j=1

φF (uikn−j )e
−λj . (4)

This result facilitates the computation of the

population-averaged firing threshold for population k
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at time step n

[θikn ] = θkn = θk0 +

n∑
j=1

φ[F (uikn−j )]e
−λj .

Recalling that F (uik(t)) = σik(t), we have that

[F (uik(t))] = [σik(t)] = mk(t). Therefore, we can rewrite

the above as

θkn = θk0 + φ

n∑
j=1

mkn−je
−λj .

As the number of time-steps approaches infinity,

lim
n→∞

θkn = θk∞ = θk0 + lim
n→∞

φ

n∑
j=1

mkn−je
−λj . (5)

Since for balanced dynamics we must have that

lim
n→∞

mkn = mk∞ , Eq. (5) to leading order yields

θk∞ = θk0 + φ(mk∞e
−λ + ...) = θk0 + φ

mk∞e
−λ

1− e−λ
. (6)

Thus, Eq. (6) provides an analytical approximation for

the long-time population-averaged firing threshold of

utility in deriving parameter bounds for balanced dy-

namics in the next section.

In requiring that 0 < mk < 1, it is necessary for

the time-averaged mean total input into each neuronal

population to remain positive and finite, avoiding syn-

chronous or completely quiescent network dynamics.

For the kth population, the population-averaged total

input, or mean total input, is

[µik(t)] = [
∑
l=E,I

Nl∑
j=1

Rijklσ
j
l (t) + u0k − θik(t)]

=
∑
l=E,I

Nl∑
j=1

[Rijkl][σ
j
l (t)] + µ0

k − [θik(t)].

Since each neuron is expected to receive K incoming

connections of each type and the individual connection

strength is Rkl/
√
K,

[µik(t)] = µk(t) =
∑
l=E,I

Rkl
√
Kml(t)+Ekm0

√
K−[θk(t)].

(7)

Taking the time-average of the above expression over a

long time horizon limit, such that mk∞ ≈ mk, yields

µE = (Em0 +mE −REmI)
√
K − θE∞ , (8a)

µI = (Im0 +mE −RImI)
√
K − θI∞ . (8b)

Hence, the long-time, time-averaged mean total exci-

tatory and inhibitory inputs are at most O(
√
K). The

time-averaged mean inputs thus increase with network

size yet must be dynamically adjusted in order for the

network to exhibit asynchronous and irregular dynam-

ics. It is therefore necessary for the total excitatory and

total inhibitory inputs to approximately cancel for this

to be possible in the large network limit, and so to yield

O(1) mean inputs in the large network limit we require

Em0 +mE −REmI −
θE∞√
K

= O(1/
√
K), (9a)

Im0 +mE −RImI −
θI∞√
K

= O(1/
√
K). (9b)

4 Theoretical Bounds on Balanced Dynamics

In deriving theoretical bounds on the network param-

eters which yield balanced dynamics, we consider two

scenarios: (i) θk∞ = O(
√
K) and (ii) θk∞ = O(

√
K)

as K → ∞ in the large network size limit. Case (i)

corresponds to adaptation sufficiently small such that

it has no impact on the time-averaged mean inputs in

the large network size limit. Here standard balanced

network theory holds (van Vreeswijk and Sompolinsky

1998), and the parameter bounds for balanced dynam-

ics in both the excitatory and inhibitory populations

are known to be

E

I
>
RE
RI

> 1. (10)

Thus, we focus case (ii), when θk∞ = O(
√
K), to de-

termine the impact of spike-frequency adaptation on

the theoretical parameter bounds. According to Eq. (6),

the long-time, population-averaged firing threshold θk∞
may only have an O(

√
K) impact in Eq. (9) originat-

ing from the term mk∞
φe−λ

1−e−λ /
√
K, as the non-adapted

threshold θk0 is assumed O(1). Requiring that Eq. (9)

be satisfied when the adaptation factor ω = φe−λ

1−e−λ /
√
K

is O(1) as K →∞ yields

Em0 + (1− ω)mE −REmI = O(1/
√
K), (11a)

Im0 +mE − (RI + ω)mI = O(1/
√
K). (11b)

For K sufficiently large, this yields to leading order[
1− ω −RE

1 −RI − ω

] [
mE

mI

]
=

[
−Em0

−Im0

]
.

with solution

mE =
(RI + ω)E −REI

(RI + ω)(ω − 1) +RE
m0, (12a)

mI =
E + (ω − 1)I

(RI + ω)(ω − 1) +RE
m0. (12b)
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Requiring that both the excitatory and inhibitory pop-

ulations are neither quiescent nor synchronous, in par-

ticular 0 < mE < 1 and 0 < mI < 1, we obtain param-

eter bounds

E

I
>

RE
RI + ω

> 1− ω > 0. (13)

These new parameter bounds are especially illumi-

nating when compared to the theoretical bounds ob-

tained when spike-frequency adaptation is negligible

given in Ineq.. (10). First, note that adaptation fac-

tor ω is a monotonically increasing function of adap-

tation strength. Depending on the adaptation factor,

qualitatively distinct dynamics manifest. We observe in

Eq. (12) that the numerators of mE and mI are linearly

monotonically increasing in ω and the common denom-

inator is quadratically monotonically decreasing in ω

for ω > (1 − RI)/2. Thus, for ω sufficiently large, the

theoretical activities in both populations will decrease

with adaptation strength. When adaptation strength is

too large, the dynamics are expected to become unbal-

anced. For extremely strong adaptation, namely ω > 1,

we see from Eq. (8), increasing the theoretical mean

excitatory population activity decreases the mean in-

put into the excitatory population, thereby disrupting

balance. Intuitively, as the adaptation strength becomes

sufficiently large, the long-time firing threshold becomes

of larger order than the expected inputs into each pop-

ulation, making balance impossible to sustain.

In contrast, for smaller ω, balanced dynamics can

still be well reconciled with spike-frequency adaptation.

For weak adaptation strength, 0 < ω < 1−RI , Eq. (12)

demonstrates that adaptation instead increases the the-

oretical mean activity of each population. The effect

of this can be seen in the adapted bounds given by

Ineq. (13). In particular, for fixed RI , the inequality

holds for RE larger in magnitude than in the non-

adapted bounds in Ineq. (10). Intuitively, since E > I,

the increase in mE is more pronounced than the in-

crease in mI under weak adaptation, and thus the ex-

citatory population may undergo additional recurrent

inhibition and still maintain balanced dynamics.

For moderate adaptation strength, 1 − RI < ω <

1, Ineq. (13) analogously implies that adaptation de-

creases the magnitude of the RE for which balance

holds for fixed RI , implying that balance is maintained

when the excitatory population is instead less recur-

rently inhibited. Here adaptation begins to decrease the

mean activity of the two populations and, to compen-

sate, more recurrent excitation is necessary to achieve

non-adapted levels of activity in the balanced regime

for the same choice of the remaining parameters.

We further observe that since E
I > RE

RI+ω
in the

adapted bounds, increasing the adaptation strength

maintains balanced dynamics for potentially larger ex-

ternal inputs into the inhibitory population relative to

a fixed external input into the excitatory population.

Note that in the non-adapted case, increasing the ex-

ternal input into the excitatory population increases

the theoretical mean activity of both populations and

increasing the external input into the inhibitory popu-

lation decreases the theoretical mean activity in both

populations. In contrast, based on the mean activities

in Eq. (12) observed under adaptation, we see that if ω

increases in the balanced regime, the decrease in theo-

retical activity garnered by increasing I is offset by ω,

and thus a larger I is required to attain non-adapted

levels of activity in the balanced regime for the same

choice of the remaining parameters.

To provide additional intuition for the impact of

adaptation strength on the model network dynamics,

we contrast the network activity for two representative

choices of adaptation parameters. For relatively weak

adaptation strength, we observe, as depicted in Fig.

2(a), typically any increases in threshold from firing

events are mitigated by the decay in adaptation effect

over time, yielding only a slight overall increase in spik-

ing threshold. In Fig. 2(b), we note that across both the

excitatory and inhibitory populations, there is a small

net gain in average threshold over a short time scale,

leveling off to yield a nearly constant spiking threshold

slightly increased relative to the non-adapted thresh-

old. In this case, balance is still quite well maintained,

with mean activities nearly constant about a slightly

decreased value and EI ratios faintly elevated in mag-

nitude, as shown in Fig. 2(c)-(d). In contrast, when

adaptation is sufficiently strong (ω > 1), as considered

analogously in Fig. 3, the mean spiking threshold in-

creases significantly initially, ultimately saturating at a

much larger value than in the case of more moderate

adaptation. The level of mean activity decreases dra-

matically before saturating about a significantly smaller

level of activity with a corresponding large increase in

the magnitude of the EI ratios, indicating a severe loss

in balance under extreme adaptation.

In light of these observations, we conclude that in

the presence of weak or moderate adaptation, although

the theoretical parameter bounds shift, balance is still

achievable in the proper parameter regime. However,

for strong adaptation, particularly ω > 1, balance may

no longer be achieved regardless of the choice of param-

eters. It is important to underline the fact that the case

of strong adaptation is not biologically realistic (Benda

and Herz 2003; La Camera et al. 2006; Augustin et al.

2013), and thus these theoretical considerations pro-

vide evidence that balanced dynamics may be recon-

ciled with spike-frequency adaptation in physiological
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Fig. 2 Dynamics of binary neurons under moderate spike-frequency adaptation. (a) Firing threshold of a sample neuron over
time. (b) Mean firing threshold across the excitatory (blue) and inhibitory (red) populations. (c) The mean activity across
each neuron population. (d) Histogram of the ratio between time-averaged excitatory and inhibitory inputs across the neuronal
network. Adaptation parameters are λ = 0.2 and φ = 0.3, yielding adaptation factor ω < 1.
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Fig. 3 Dynamics of binary neurons under strong spike-frequency adaptation. (a) Firing threshold of a sample neuron over
time. (b) Mean firing threshold across the excitatory (blue) and inhibitory (red) populations. (c) The mean activity across
each neuron population. (d) Histogram of the ratio between time-averaged excitatory and inhibitory inputs across the neuronal
network. Adaptation parameters are λ = 0.005 and φ = 0.3, yielding adaptation factor ω > 1.

neuronal networks. We remark that our analysis does

not make any specific assumptions about the relative

number of excitatory and inhibitory neurons beyond

1 � K � NE , NI , such that the neuronal popula-

tions are sufficiently large and sparsely connected for

the mean-field limit to be well justified. Thus, balance

may be consistent with spike-frequency adaptation in

alternative regions of the brain with diverse ratios of

excitatory to inhibitory neurons.

5 Adaptation Exclusively in Excitatory

Population

Reflecting the physiological observation that excitatory

neurons are typically more likely to undergo spike-

frequency adaptation than inhibitory neurons (La Cam-

era et al. 2006; Augustin et al. 2013), we instead assume

that only the excitatory population is subject to adap-

tation. Significantly, the results in this case are funda-

mentally distinct from those obtained when both popu-

lations exhibit adaptation and provide valuable insights

into a potentially new role of adaptation in cognition.

Repeating the analysis in the previous section under
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the assumption θI∞ = θI yields

mE =
RIE −REI

RI(ω − 1) +RE
m0, (14a)

mI =
E + (ω − 1)I

RI(ω − 1) +RE
m0 (14b)

with corresponding parameter bounds

E

I
>
RE
RI

> 1− ω. (15)

We observe that when only the excitatory population

is subject to adaptation, the parameter bounds neces-

sary for balanced dynamics in fact widen with adapta-

tion strength. As ω → ∞, Eq. (14) admits a solution

such that mE → 0 and mI → I
RI
m0, for which the

inhibitory population never ceases firing, allowing the

inhibitory population to exhibit asynchronous firing ac-

tivity in response to the excitatory external input while

the excitatory population is approximately quiescent. If

we consider such a solution balanced, then ω > 1 is an

admissible parameter choice. In contrast, note that as

ω →∞ when both populations undergo adaptation, the

firing rate for each population vanishes. Similar analysis

demonstrates that in the case when only the inhibitory

population undergoes spike-frequency attenuation, the

parameter bounds for balance become more restrictive.

For these reasons, we hypothesize that evolution may

have selected for this network architecture, specifically

adaptation primarily exhibited by excitatory neurons,

with the goal of more robustly preserving balanced dy-

namics. We emphasize this holds broadly for alterna-

tive network parameters, reflecting diverse brain region

structures, and thus may be a fundamental architec-

tural principle aimed at robustly achieving balanced

dynamics.

6 Numerical Investigation of Spike-Frequency

Adaptation

The theoretical analysis discussed in the previous sec-

tion held approximately in the large network limit. To

discern the impact of spike-frequency adaptation for

finite-sized neuronal networks and gain a more detailed

perspective on the bounds on adaptation strength nec-

essary for balanced dynamics, we exhaustively inves-

tigate the adaptation parameter space and its impact

on several metrics of balance over an ensemble of net-

work realizations. Performing analysis on a network of

N = 5000 neurons, where all neurons undergo adapta-

tion, we are able to provide a more detailed explanation

of both when and how balance breaks down for suffi-

ciently strong adaptation.

In Fig. 4, we vary adaptation jump strength φ and

adaptation decay rate λ while holding the remainder of

the model network parameters constant. First, we an-

alyze the time-averaged mean ratio of the total excita-

tory and total inhibitory input into each neuron across

the network in Fig. 4(a). We observe that for weak

adaptation (small φ and large λ), the mean EI ratio

is close to −1, indicative of balance, with the EI ra-

tio becoming more negative as the adaptation strength

increases and the dynamics become more unbalanced.

At the same time, as the adaptation strength increases,

the time-averaged mean activities across the excitatory

and inhibitory populations both decrease, as exhibited

in Fig. 4(b)-(c), respectively.

While it is clear balance breaks down for suffi-

ciently strong adaptation, as the EI ratio decreases and

mean activity across the network decreases, the pre-

cise mechanism for this transition in dynamics is im-

portant to discern. In Fig. 4(d)-(e), we investigate the

time-averaged mean total excitatory and inhibitory in-

puts, respectively, across the neuronal network. We note

that while both types of input decrease in magnitude

with adaptation strength, the decrease in the magni-

tude of the inhibitory input is significantly more dra-

matic. The mean firing threshold across the two popula-

tions increases comparably with adaptation, as shown

in Fig. 4(f)-(g), and thus the balance in EI ratio ap-

pears broken largely due to the disproportionate de-

crease in the magnitude of inhibitory inputs with high

adaptation strength. Note that corresponding to this

relatively large drop in the magnitude of the inhibitory

input is a significant decrease in the mean activity of

the inhibitory population, as shown in Fig. 4(c), fur-

ther evidencing that the inhibitory population is more

strongly impacted by increased adaptation and thereby

facilitates the breakdown in balanced dynamics.

These numerical results are consistent with the the-

oretical analysis in the previous sections. In particu-

lar, in Fig. 4(h), we plot the adaptation factor ω =
φe−λ

1−e−λ /
√
K over the adaptation parameterscape. We

observe that for ω < 1, when the long-time adapted

threshold is expected to be of smaller size than the pop-

ulation inputs, the balanced operating regime is robust.

Comparing the numerically computed value of the long-

time population-averaged firing threshold to the theo-

retical approximation given by Eq. (6) for adaptation

parameters in the balanced regime yields a relative er-

ror of only 0.07. Moreover, since the parameterscape

plots in Fig. 4(a)-(g) closely mimic the changes in ω

with λ and φ, the adaptation factor ω is indeed closely

aligned with the degree of balance demonstrated by

the network. Note that for the particular parameters

numerically investigated, Ineq. (13) holds for ω < 1,
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Fig. 4 Impact of adaptation strength on balanced dynamics when both the excitatory and inhibitory populations exhibit
adaptation in a binary neuronal network. Panels (a)-(f) numerically investigate the effect of adaptation jump strength φ and
adaptation decay rate λ on the: (a) mean ratio between time-averaged excitatory and inhibitory inputs across the neuronal
network; (b) time-averaged mean activity of the excitatory neuron population; (c) time-averaged mean activity of the inhibitory
neuron population; (d) time-averaged mean total excitatory input into the entire network; (e) time-averaged mean total
inhibitory input into the entire network; (f) time-averaged mean firing threshold across the excitatory population; (g) time-

averaged mean firing threshold across the inhibitory population; (h) adaptation factor ω = φe−λ

1−e−λ /
√
K thresholded at ω = 1.

which is consistent with the choices of adaptation pa-

rameters empirically yielding balanced dynamics shown

in Figs. 4(a)-(g). It is important to remark that the

rate at which the dynamics become unbalanced is quite

slow for moderate attenuation strengths, with balance

only rapidly diminishing for more extreme adaptation.

Hence, even for networks of finite size, we see balanced

dynamics are robust over a broad range of adaptation

strengths.
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Fig. 5 Impact of adaptation strength on balanced dynamics when only the excitatory population exhibits adaptation in a
binary neuronal network. Panels (a)-(f) numerically investigate the effect of adaptation jump strength φ and adaptation decay
rate λ on the: (a) mean ratio between the time-averaged excitatory and inhibitory inputs across the neuronal network; (b)
time-averaged mean activity of the excitatory neuron population; (c) time-averaged mean activity of the inhibitory neuron
population; (d) time-averaged mean total excitatory input into the entire network; (e) time-averaged mean total inhibitory
input into the entire network; (f) time-averaged mean firing threshold across the excitatory population.

Using the same choice of network parameters as dis-

cussed previously, we depict in Fig. 5 analogous metrics

of balance for the more physiological case in which only

the excitatory population is subject to spike-frequency

adaptation. Here we see that the parameter regime in

which balanced dynamics are preserved becomes sig-

nificantly widened. Strikingly, there is only a marginal

decrease in the mean EI ratio even for extreme choices

of adaptation strength. In this case, the decrease in the

time-averaged mean total excitatory and inhibitory in-

puts as well as mean activity are closely matched in

magnitude, robustly preserving balance over the inves-

tigated parameterscape. Our numerical analysis thus

agrees with the notion that by spike-frequency adapta-

tion manifesting primarily in excitatory neurons, bal-

anced dynamics are more broadly achieved over a larger

space of network architectures and operating regimes

than in the non-adapted case.

7 Generalization to Integrate-and-Fire Model

To demonstrate that our results are generalizable

to more physiological neuronal models with spike-

frequency adaptation, we similarly investigate a pulse-

coupled integrate-and-fire (I&F) network model (Cor-

ral et al. 1995; Mather et al. 2009; Barranca et al.

2014a). While relatively computationally inexpensive,

the I&F model reproduces realistic neuronal firing rates

and provides a fairly accurate description of physiolog-
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ical subthreshold voltage dynamics (Carandini et al.

1996; Rauch et al. 2003; Burkitt 2006).

We analyze two distinct variations of modeling

spike-frequency adaptation in this framework. The first

will model adaptation analogously to the binary case by

increasing the neuronal firing threshold for each neuron

after it undergoes a firing event. The second will instead

keep the firing threshold constant while explicitly in-

cluding an adaptation current that decreases firing rate

following action potentials.

The membrane-potential dynamics of the ith neuron

in kth population of the pulse-coupled I&F network, vik,

is modeled by the differential equation

τ
dvik
dt

=− (vik − vR) + u0k +

NE∑
j=1
j 6=i

RijkE

∑
l

δ(t− τEjl )

+

NI∑
j=1
j 6=i

RijkI

∑
l

δ(t− τ Ijl), (16)

evolving continuously on a time-scale reflected by τ ,

until reaching firing threshold θik. At that moment the

neuron is said to fire and its state is instantaneously re-

set to the value vR. Using the same notation and con-

nectivity structure as in the binary model, a neuron

in the kth population receives external input u0k and

the realization of adjacency matrix, R, determines the

recurrent connectivity in the network. Neuronal inter-

actions are reflected at the moment of action potentials

such that at the time of the lth firing event of the jth

neuron in the kth population, τkjl, the activity of all

post-connected neurons is offset as a result of integrat-

ing over the Dirac delta function δ(·) in Eq. (16).

For an identical choice of network architecture pa-

rameters as considered for the binary model in Fig. 1,

we briefly underline several aspects of the dynamics of

the I&F network in the balanced regime. As shown in

Fig. 6(a), the ratio of the time-averaged excitatory and

inhibitory inputs across the network is clustered near

−1, indicative of balance. The mean activity for each

population across time is nearly constant, depicted in

Fig. 6(b), demonstrating neither synchronous nor qui-

escent dynamics overall. This asynchronous activity is

also reflected in the raster plot shown in Fig. 6(c), which

exhibits a sequence of points corresponding to the in-

dex of each spiking neuron as a function of the time of

each action potential.

Using first an I&F model with threshold-based adap-

tation, we reflect spike-frequency adaptation by increas-

ing the firing threshold of the ith neuron in the kth

population, θik(t), by φ the moment the neuron fires.

Between firing events, θik(t), evolves according to

dθik
dt

= −λ(θik − θk), (17)

such that the firing threshold decays to the constant

non-adapted firing threshold for all neurons in the kth

population, θk, in the absence of firing events. Hence,

analogous to the binary model with adaptation, φ deter-

mines the instantaneous increase in threshold following

a firing event and λ determines the decay rate of the

threshold offset.

Reflecting the essential characteristics of more bio-

logically realistic adaptation currents, we also analyze

an I&F model with current-based adaptation, which

specifically incorporates an adaptation current wik(t)

associated with the ith neuron in the kth population

while instead keeping the firing threshold constant at

θk. The dynamical system model is adjusted in this case

to

τ
dvik
dt

=− (vik − vR) + u0k +

NE∑
j=1
j 6=i

RijkE

∑
l

δ(t− τEjl )

+

NI∑
j=1
j 6=i

RijkI

∑
l

δ(t− τ Ijl)− wik

dwik
dt

= −λwik, (18)

where wik is instantaneously increased by φ at each time

its corresponding neuron fires and λ controls the decay

rate for the adaptation current.

In generalizing our analysis to the framework of the

I&F model, it is important to note that in the ab-

sence of adaptation, neurons in the balanced operat-

ing regime asynchronously fire at a low rate and their

spike trains are approximately independent. Thus, the

summed spike train input of each type into each neu-

ron tends asymptotically towards a Poisson spike pro-

cess (Cinlar 1972). In effect, the mean network drive

from the kth population to a neuron in the jth pop-

ulation is approximately mkRjk
√
K. For this reason,

the balance condition for the pulse-coupled I&F net-

work model is identical to Ineq. (10) derived for the

binary network model. In addition, the cumulative im-

pact of firing events on the firing threshold θik(t) for

a given neuron in the threshold-based I&F model is

given by φ
∑
τkil
e−λ(t−τ

k
il), which is the continuous ana-

log for the increase in threshold corresponding to fir-

ing events in the adapted binary model. The analy-

sis in Section 3 therefore carries over approximately to

the I&F network with threshold-based adaptation and

yields a perturbed adaptation factor that agrees with

ω to leading order. Ineq. (13) thus retains an identical



The Impact of Spike-Frequency Adaptation on Balanced Network Dynamics 13

-1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6

Ratio of Excitatory to Inhibitory Inputs

0

50

100

150

200

F
re

q
u

e
n

c
y

20 40 60 80 100 120 140 160 180 200

Time

0

0.01

0.02

0.03

0.04

0.05

0.06

M
e

a
n

 A
c
ti
v
it
y

Excitatory
Inhibitory

50 60 70 80 90 100

Time

0

1000

2000

3000

4000

5000

N
e

u
ro

n
 N

u
m

b
e

r

(a)

(b)

(c)

Fig. 6 Dynamics of integrate-and-fire neurons in the balanced operating regime. (a) Histogram of the ratio between time-
averaged excitatory and inhibitory inputs across the neuronal network. (b) The mean activity across the excitatory (blue) and
inhibitory (red) populations. (c) Raster plot displaying asynchronous firing activity across the network, displayed for a subset
of simulation time for greater resolution. The network architecture is identical to the binary network considered in Fig. 1.

structure and dependence on the resultant adaptation

factor, thereby demonstrating a similar theoretical rela-

tionship between adaptation strength and balanced ac-

tivity. Following in suite, we expect that the bounds for

balanced dynamics determined for the I&F model with

current-based adaptation at least qualitatively demon-

strates the same structure as the adapted binary model

and confirm this numerically.

We underline the numerical evidence that our pre-

vious binary model analysis naturally generalizes to the

I&F model in Fig. 7, thereby providing a more robust

connection between balanced dynamics and adaptation.

In Fig. 7(a)-(b), we plot the time-averaged mean EI

ratio and time-averaged mean threshold, respectively,

across the I&F network with threshold-based adapta-

tion over the λ − φ parameter space. We see a nearly

identical structure as observed in the binary network,

with the EI ratio decreasing for sufficiently high adap-

tation strength and high corresponding mean spiking

threshold. Likewise, in Fig. 7(c)-(d), we depict anal-

ogous plots for the I&F network with current-based

adaptation, which demonstrate the same trend. If in-

stead only the excitatory population undergoes spike-

frequency attenuation, we observe in Fig. 7(e)-(f) that
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Fig. 7 Impact of adaptation strength on balanced dynamics in integrate-and-fire networks. Each panel numerically investigates
the effect of adaptation jump strength φ and adaptation decay rate λ. (a) Mean ratio between time-averaged excitatory and
inhibitory inputs across a neuronal network in which all neurons undergo threshold-based adaptation. (b) Time-averaged
mean firing threshold across a neuronal network in which all neurons undergo threshold-based adaptation. (c) Mean ratio
between time-averaged excitatory and inhibitory inputs across a neuronal network in which all neurons undergo current-based
adaptation. (d) Time-averaged adaptation current w across a neuronal network in which all neurons undergo current-based
adaptation. (e) Mean ratio between time-averaged excitatory and inhibitory inputs across a neuronal network in which only
excitatory neurons undergo threshold-based adaptation. (f) Mean ratio between time-averaged excitatory and inhibitory inputs
across a neuronal network in which only excitatory neurons undergo current-based adaptation.

both versions of the adapted I&F network demonstrate

little deviation from balance in the EI ratio even un-

der high adaptation strengths, agreeing with the no-

tion that adaptation facilitates balanced dynamics in

this case.

8 Discussion

Our work demonstrates in the context of several neu-

ronal network models that balanced dynamics are well

preserved for physiological spike-frequency adaptation

strengths. We verify this theoretically in the large net-

work limit and provide detailed numerical evidence in

the finite network case. While for sufficiently strong

adaptation, balance does diminish, such strengths are

inconsistent with what is observed in vivo. In the case

when only excitatory neurons undergo adaptation, as

found in many areas of the brain, we show that balance

is yet more robustly preserved over a wide parameter

space. This provides new evidence for the hypothesis

that neuronal networks may have evolved such that ex-

citatory neurons exhibit spike attenuation in order to

maintain balanced dynamics over a broad range of oper-
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ating states, potentially improving input encoding and

memory.

There are numerous lines of experimental evidence

suggesting that an imbalance in inhibitory and excita-

tory neuronal inputs may underlie autism spectrum dis-

orders as well as schizophrenia (Gao and Penzes 2015;

Tatti et al. 2017; Nelson and Valakh 2015; Rosenberg

et al. 2015), and thus degeneracies in neuronal dynam-

ics, such as particularly strong or weak adaptation,

could potentially aid in explaining disorders in brain

function. It may therefore be informative to further ex-

amine experimentally the link between adaptation and

balanced dynamics.

While we investigated the relationship between

spike-frequency adaptation and the balanced operating

regime in the context of the binary and integrate-and-

fire neuronal models, we expect that our framework for

investigation largely generalizes to more physiological

network models with slow adaptation currents incor-

porated, such as the Hodgkin-Huxley model and the

quadratic as well as exponential integrate-and-fire neu-

ronal models (Richardson 2009; Fourcaud-Trocme et al.

2003; Barranca et al. 2014a). As the theory of balanced

networks for continuous models has largely been devel-

oped for pulse-coupled neuronal networks (Boerlin et al.

2013; Litwin-Kumar and Doiron 2012; Mongillo et al.

2012; Renart et al. 2010; Deneve and Machens 2016),

we expect that studying alternative neuronal models

with pulse-coupling would facilitate the most natural

setting to extend the results of this study. Though we

investigated the impact of several idealized models of

spike-frequency attenuation in this work, in light of

the multitude of alternative models and mechanisms

for spike-frequency adaptation (Barranca et al. 2014a;

Treves 1993; Liu and Wang 2001; G.D.Smith et al. 2002;

Mensi et al. 2012; Touboul and Brette 2008), analo-

gously studying adaptation in more physiological forms

would make for an interesting area of future examina-

tion. Our theoretical analysis was more tractable un-

der the assumption that the network connectivity was

homogeneous and random; however, an important di-

rection for future study is the impact of adaptation on

the balanced operating regime in networks with more

biologically realistic structure, such as a small-world or

scale-free architecture, commonly observed in the brain

(Dorogovtsev and Mendes 2002; van den Heuvel et al.

2008; Sporns and Honey 2006; Netoff et al. 2004; Roxin

et al. 2004).
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Dynamics of the exponential integrate-and-fire model

with slow currents and adaptation. J. Comput. Neu-

rosci., 37(1):161–180, Aug 2014a.
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