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MULTIFRACTAL AND MONOFRACTAL SCALING IN A LABORATORY MAGNETOHYDRODYNAMIC
TURBULENCE EXPERIMENT
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ABSTRACT

Both multifractal and monofractal scaling of structure function exponents are observed in the turbulent magnetic
fluctuations of the Swarthmore Spheromak Experiment plasma. Structure function and probability distribution
function (PDF) analysis exhibits multifractal scaling exponents in low frequency, inertial range fluctuations of the
turbulence but monofractal scaling in higher frequency, dissipation range fluctuations. The transition from
multifractal to monofractal scaling occurs rapidly suggesting a dissipation mechanism that is insensitive to
turbulent structure scale size. Structure functions and PDFs are presented for both temporal and spatial
measurements. Variations in the magnetic helicity in the plasma are also shown to modify multifractal scaling
characteristics of the inertial range, but do not affect the monofractal scaling of the dissipation range.

Key words: methods: statistical – magnetohydrodynamics (MHD) – plasmas – turbulence

1. INTRODUCTION

This paper presents the results of a thorough intermittency
analysis of the fluctuating magnetic fields in the Swarthmore
Spheromak Experiment (SSX) plasma through the use of
structure functions and probability distribution functions
(PDFs) of increments of both temporal and spatial measure-
ments. The primary observation from this analysis is that
temporal regions of the magnetic fluctuation data that are
shown to be consistent with dissipation range turbulence
(Schaffner et al. 2014a) exhibit a structure function scaling that
indicates self-similar structure, whereas temporal regions
consistent with inertial range turbulence do not exhibit this
self-similarity. These results are discussed in the context of the
multifractal versus the monofractal structure function scaling
behavior of turbulence (Paladin & Vulpiani 1987; Frisch 1995;
Marsch & Tu 1997), where a lack of self-similarity can be
attributed to the multifractal behavior of the system. Similar
distinctions between the inertial range and the dissipation range
scaling were made in recent solar wind observations (Kiyani
et al. 2013), suggesting that physical mechanisms underlying
the scaling in each regime may be universal between solar wind
and laboratory-based MHD turbulence. Furthermore, the
relatively fast transition from multifractal to monofractal
scaling suggests a dissipation mechanism that may have an
absolute scale, such as the generation of current sheets at the
ion inertial scale length (Kiyani et al. 2009, 2010), and not one
that is relative to the scale size of structures in the inertial range
such as that observed in conventional fluid turbulence
(Chevillard et al. 2005).

Trends in scaling with magnetic helicity injection are also
explored. Previous work (Schaffner et al. 2014c) demonstrated
that increased injected helicity in the SSX plasma system
resulted in an increased intermittency of the raw dB t dt( )
signal. Results reported here show that B(t) formed from time
integration of the raw dB t dt( ) signal exhibits this same trend.
The scaling behavior of the structure functions differ with
helicity depending on whether they are constructed from data in
the dissipation versus the inertial range. Inertial range scaling

appears to vary more widely with helicity than the dissipation
range. This indicates that variation of helicity injection has an
effect only on intermittent structures generated in the inertial
range, or on the physical mechanism, which does the
generating. Conversely, the mechanism that governs inter-
mittency in the dissipation range is not strongly affected by the
overall helicity content of the plasma.
A structure function analysis has typically been utilized to

extend spectral or correlation analyses of turbulent fluctuations
to higher-order statistics, particularly in scenarios where
Gaussian and self-similar properties appear to break down.
Examined first in hydrodynamics (Anselmet et al. 1984; Frisch
1995), the use of the technique has been expanded to MHD
fluids including the solar wind velocity fluctuations (Bur-
laga 1991), solar wind magnetic fluctuations (Burlaga 1992; Tu
& Marsch 1995), and magnetospheric plasmas (Consolini
et al. 1996; Hnat et al. 2003). The work has led to the
development of models that attempt to reconcile the observa-
tion of intermittency and non-self-similar statistics in turbu-
lence fluctuations with the 1941 Kolmogorov turbulence
model, which implies a self-similar fluctuation structure and
can be described in terms of a monofractal scaling exponent
(Kolmogorov 1941; Frisch 1995). Such multifractal models
relax global scale invariance to a local scale invariance.
Physically, these models describe modifications of how energy
is distributed to smaller scales from larger scales either through
differences in the space-filling nature of the turbulence, such as
the random β-model (Benzi et al. 1984) or through variations in
the energy transfer rate from larger to smaller scales such as the
log-normal model (Kolmogorov 1962), the p-model (Mene-
veau & Sreenivasan 1987), and the She–Leveque model
(Dubrulle 1994; She & Leveque 1994). Multifractal scaling
models can make predictions for dissipation scaling, in
particular, addressing a reduction in scaling exponents by
viscosity (Frisch & Vergassola 1991; Chevillard et al. 2005).
Since these models were developed with isotropic and
homogeneous turbulence of conventional neutral fluids,
extending intermittency models to MHD turbulence has added
complications. MHD turbulence is inherently anisotropic—due
to the symmetry breaking caused by embedded magnetic fields
—in addition to having fluctuations, energy transfer and
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dissipation channels for both magnetic and velocity fields.
While hydrodynamic intermittency models have been directly
applied to MHD turbulence (Burlaga 1991; Pagel &
Balogh 2002), modified models pertaining explicitly to MHD
have also been developed (Carbone 1993; Biskamp 1994;
Biskamp & Müller 2000; Müller & Biskamp 2000; Bol-
dyrev 2002; Cho et al. 2003). Structure function analysis can be
of particular use for extracting signatures of dissipation in
MHD turbulence (Cho et al. 2003; Alexandrova et al. 2008;
Kiyani et al. 2009, 2013).

2. EXPERIMENT

MHD turbulent fluctuations are produced inside the compact
wind tunnel configuration of the SSX using a plasma gun
source inside a flux-conserving copper boundary. A turbulent
cascade is generated by the injection of large-scale (size of the
column radius) magnetic structures by the gun, which evolve
and relax under the constraint of constant magnetic helicity
inside the flux-conserving column, transferring energy to
smaller scales (Schaffner et al. 2014a). The copper cylinder
is 15.5 cm in diameter and 86 cm long and situated inside a
highly evacuated chamber ( 1 10 8» ´ - Torr). The details of the
gun source and production of magnetic fluctuations have been
previously reported (Brown & Schaffner 2014, 2015; Schaffner
et al. 2014a). The gun produces a 120 sm discharge of plasma;
though the plasma is pulsed, there is a window of time in which
the energy input from the gun roughly balances the energy loss
in the system, generating a period of stationarity of fluctuations
(Brown & Schaffner 2014, 2015; Schaffner et al. 2014b). This
time range, from 40 to 60 sm after initiation of the discharge, is
extracted from each shot to form an ensemble for analysis. The
diagnostic analyzed in this paper is of magnetic fluctuations
using an array of 16 magnetic pickup channels. Each channel
consists of a single-loop of magnetic wire, 3 mm in diameter.
Three loops are oriented in each cylindrical coordinate
direction (B B B, ,r zq ) and each triplet is separated by 0.46 cm
spanning from about 1 cm off the cylindrical axis to the edge of
the cylinder boundary. The injected helicity of the plasma is
scanned from 0 to 7 10 Wb5 2´ - which corresponds to a scan
of the amount of flux provided to the gun core—from 0 to
1.5 mWb (Schaffner et al. 2014c).

3. ANALYSIS TECHNIQUES

The structure functions and PDFs are constructed by taking
differences or increments at varying temporal or spatial
separations. In this analysis, the increments of magnetic
measurements are constructed in three ways; first, the
increments of each orthogonal magnetic component ( BrD ,

BD q, and BzD ) are examined separately. Then, vector
magnitude is created from the vector sum of the three
components at each time step and differences between the
magnitudes ( B∣ ∣D ) at each time step are used for the analysis.
Lastly, the magnitude of the vector difference between time
points is used as the increment ( B∣ ∣D ). The increments can be
in terms of a spatial division or a temporal division. In the
context of this experiment, the spatial increments are in units of
separation distance between probe locations ( r 0.46 cmminD = )
, while the temporal increments are in units of sampling
cadence ( 15.4 nsmintD = ), which corresponds to the sampling
frequency of 65MHz. Increments are then increased in

multiples of these minimum values. Maximum separation
values are limited by physical distance or data acquisition time
span, as well as the ability to generate enough statistics for a
valid calculation, though the main focus of results here will be
on scales much smaller than the available time span to avoid
issues of non-stationarity.
For a given increment, xD , the PDF of increments is

constructed by computing and histogramming a list of BD ʼs,

B B x x B x 1∣ ( ) ( )∣ ( )D = + D -

which can then be normalized to the standard deviation and the
total number of increments available in the data set for each
given xD .
A PDF can describe the nature of the data in terms of its

relative distribution with respect to a Gaussian distribution.
Large excursions of values in the tail values of the distribution
are then indicative of intermittent behavior in the time series
signal—i.e., large jumps in values outside of the standard
deviation of the mean. Physically, these excursions can be
identified with mechanisms in the plasma such as current sheets
or shocks.
Further insight into the physical nature of the plasma can be

gained by comparing these PDFs over a range of scales. This
can be accomplished qualitatively by examining how the PDFs
themselves change, but can also be quantitatively accomplished
by calculating moments of these distributions: these are the
structure functions. The structure function can be constructed
for a given xD by computing the average of the increments
raised to some order, p, as in,

S x B x x B x 2p
j j

p( )( ) ∣ ( )∣ ( )D = á + D - ñ

again where j indicates the available increments to be
summed over.
Analysis of structure functions can illuminate characteristics

of the fluctuations, particularly when modeled as a power-law
function,

S x x . 3p ( ) ( ) ( )D = D z

When plotted logarithmically, ζ is the slope of the structure
function; this slope can indicate the relative level of
intermittency compared between two signals. That is, the
steeper the slope, the more intermittent (i.e., the larger the “fat
tails”) the signal is. A flat line is the extreme case and indicates
a lack of intermittency in the signal. As one would expect, the
structure function of a time series generated from a normal
distribution has a flat structure function. Changes in slope with
scale indicates a change in intermittency as a function of scale.
It should be noted, however, that this trend is not a perfect
predictor of the presence of intermittency. For example, it can
be shown that a time series of fractional Brownian motion
(fBm) can be constructed with the same structure function
slope (Hnat et al. 2003), but fBm produces a Gaussian
probability distribution of increments. However, when inter-
mittency is known to be present based on the PDF of
increments (as is true for this SSX data set) then the
relationship between slope and degree of intermittency
generally holds true.
If ζ scales as a linear function of order p (i.e., p Hp( )z = ),

the system exhibits self-similarity at different scales. In this
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context, the self-similarity is a qualitative measure of how alike
fluctuations appear at different scales. For example, a fractal
from chaos theory is a construct that exhibits self-similarity. In
other words, a self-similar system can be described in terms of
a single fractal scaling or monofractal scaling description. The
constant coefficient, H, is called the Hurst exponent; it can be
shown that distributions that exhibit this self-similarity can be
rescaled using the Hurst exponent as

B x x B xPDF , PDF , . 4H H( ) ( ) ( ) ( )D D = D D D-

A nonlinear p( )z , however, indicates non-self-similar behavior,
exhibiting multiple fractal scalings simultaneously (i.e., multi-
fractal behavior). These distinctions again can be used to
elucidate possible physical mechanisms at play in the plasma.

In particular, it has been shown that differences in self-
similarity exist between inertial range and dissipation range
data in the solar wind (Kiyani et al. 2009, 2013). The slope of
the structure functions of the solar wind inertial range were not
linear as a function of order, indicating that these inertial range
turbulent fluctuations do not exhibit self-similarity of turbulent
structure and can be considered multifractal. On the other hand,
the same analysis for dissipation range structure functions
exhibited linear scaling—evidently, the physical mechanism
behind the dissipation in the solar wind has a self-similar, scale-
invariant nature—that is, monofractal behavior.

4. TEMPORAL AND SPATIAL PDFS OF INCREMENTS

Representative PDFs of both temporal and spatial magnetic
field magnitude ( B∣ ∣D ) increments are shown in Figure 1 with
temporal PDFs on the left and spatial PDFs on the right. Each
of the PDFs is scaled to its own standard deviation and total
count so that they can be cross compared. The increments
chosen for the temporal PDFs are 0.092 sm , 0.46 sm , and
1.85 sm which correspond to frequencies of 10.8 MHz,
2.2 MHz, and 541 kHz respectively. These three times also
approximately correspond to three different regimes of the
frequency spectra, called for lack of more accurate descriptions
the dissipation, transition, and inertial regions. All three PDFs
exhibit intermittent behavior as indicated by the wings or “fat
tails” for large fluctuation values that reflect larger counts
compared to a true Gaussian distribution, which is indicated by
the dashed red curves in each subplot. Note, though, that the
qualitative “level” of intermittency decreases with increasing
temporal increment, consistent with previous intermittency
analyses on SSX (Schaffner et al. 2014b, 2014c), as well as
solar wind results (Bruno & Carbone 2013).
The increments chosen for the spatial PDFs are 0.46 cm,

0.92 cm, and 1.38 cm, which corresponds to the minimum,
double the minimum, and triple the minimum separation
possible given the probe array in the SSX. Unlike the temporal
data, the spatial data is not believed to probe as far into
dissipation range scales (for reference, an ion inertial length of
0.6 cm and an ion gyroradius of 0.1 cm are calculated for this

Figure 1. Probability distribution functions (PDFs) of increments for (a)–(c) temporal and (d)–(f) spatial measurements of B∣ ∣D . The temporal increments are
(a)0.092 sm , (b)0.46 sm , and (c)1.85 sm while the spatial increments are (d) 0.46 cm, (e) 0.92 cm, and (f) 1.38 cm. Both temporal and spatial PDFs exhibit non-
Gaussian tails indicating intermittency (Gaussian distributions are indicated with dashed red lines), but also that the level of intermittency decreases with increasing
increment. Spatial PDFs appear to be slightly more asymmetric, which may be a result of boundary effects or low resolution compared to temporal measurements.
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plasma). Thus the spatial data is likely representative of inertial
range turbulence and at most transition range. The resulting
PDFs support this notion as they tend to have a more Gaussian-
like distribution for small fluctuations and only slightly
elevated tails. There does appear to be a trend toward
increasing Gaussian-ness with an increasing increment similar
to the temporal data. However, the curves do not appear as
smooth as the temporal data because the histograms have larger
breaks—in particular, the 0.46 cm increment PDF. This
potentially reflects both a lower amount of increment statistics
available for the spatial measurement as well as effects due to
spatial variation of the plasma. Asymmetry of the spatial PDFs
can also be seen; however, this is likely due to influences of the
boundary of which the temporal data is much less susceptible.
Finer resolution of the spatial measurements would also likely
improve the symmetry of the PDFs in addition to allowing
observation of the dissipation scale; such improved measure-
ments are currently being attempted.

As discussed before, the use of PDFs of increments can
clearly demonstrate the lack or presence of intermittent
behavior in a signal, however, in a primarily qualitative way.
Structure function analysis is needed to unearth the fractal
scaling nature of the turbulence.

5. STRUCTURE FUNCTIONS AND SCALING WITH
ORDER

To produce a more quantitative metric from the PDFs of
increments, one can calculate moments of the histogram to any
order p, and for each time or spatial delay xD . This is
equivalent to calculating the structure function in Equation (2)
for the magnetic field increments. Integer values of p
correspond to the moments of the PDF (p= 2 is the second
moment, p= 3 is the third moment, etc.) though given the form
of Equation (2), p is not restricted to integer values in the
structure function formalization.

Figure 2 shows the structure functions, S xp ( )D , for temporal
( x tD = D ) data on the left and spatial ( x rD = D ) data on the
right. The integer structure functions from p = 1 to p = 6 are
shown. The structure functions vary as a function of τ or r,
which confirms the presence of intermittency in the signal. For
the temporal results, it is clear that this variation changes as a
function of timescale, with steeper slopes at small values of τ
transitioning to shallower slopes at large values of τ. This
indicates that the relative degree of intermittency of the signal
increases when analyzed at smaller scales. The scale where the
slope changes is consistent with the transition from the inertial
to the dissipation range of the cascade as determined by the
change in spectral index of the frequency spectrum for this
plasma (Schaffner et al. 2014a). This difference between
inertial and dissipation range intermittency suggests that the
physical mechanism underlying the dissipation dynamics has a
stronger intermittent nature. Explanations for this behavior in
the solar wind typically focus on the presence of current sheets
in the magnetic turbulence (Osman et al. 2014). The
observation of this difference between dissipation and inertial
range fluctuations in this laboratory plasma also suggests the
existence of current sheets (Schaffner et al. 2014c).
The spatial structure functions do not show a change in slope

with scale; the magnitude of the slope, and thus the degree of
intermittency, is consistent with the temporal structure func-
tions in the inertial range. Since the spatial measurements can
only probe inertial range scales in the plasma, this result
supports the distinction between dissipation and inertial range
intermittency seen in the temporal data.
It can also be instructive to normalize the structure functions

and, in particular, highlight the “level” of non-Gaussianness of
a distribution. A normalized structure function can be
constructed as

S x
S x

S x
5p

p

pnorm 2 2
( ) ( )

( ( ))
( )( )D =

D

D

Figure 2. Structure functions of temporal (left) and spatial (right) measurements for integer orders p = 1 to p = 6. Fits to regions of the temporal structure functions
are made to compute scaling exponents, ζ; separate regions are selected based on the breakdown of the frequency spectrum shown in Schaffner et al. (2014a) which
occurs at approximatly 1 MHz or 1 sm . Spatial measurements likely span only the inertial range and thus only one region is fit.
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where p is the order of the moment. Using this normalized
structure function, a Gaussian time series would have a
constant value. For example, for p = 4, this quantity becomes
the flatness or kurtosis. Figure 3 shows the flatness for both
temporal and spatial data. A Gaussian timeseries would have a
constant value of three. Both Figure 3(a) and (b) show an
excursion from a Gaussian distribution at smaller increments,
though it is clearly more pronounced for the temporal data.

The self-similarity or fractal behavior of the turbulence, can
be extracted from the structure function analysis by examining
the slope of the structure functions as a function of order. The
red lines in Figure 2 are fits to the structure functions. In the
temporal data, fits are applied to two separate regions that
correspond to the dissipation and inertial regions based on
spectral frequency analysis, while the spatial data has only one
fit for the entire region. A fit is made in each of these regions
for each structure function using order p which ranges between
0.1 and 10 in steps of 0.1. The results of this scan are displayed
in Figure 4 for both time and space. The five separate magnetic
field measurements are shown now, with inertial range fits
indicated by solid lines and dissipation range fits indicated with
dashed lines. In this construction, a time series that exhibits
self-similarity or monofracticality would produce a line with a
constant slope. As the increments are raised to increasingly
higher powers, the value of the structure function should also
increase power-law-like. If the signal is self-similar, an
increment between two points in the time series at one scale
should have, on average, the same relative increment between
two points at a different scale. In other words, a big fluctuation
compared to a small fluctuation at one scale should appear to
have the same relative ratio at a different scale. Thus, the
structure function should change at a constant rate based on this
ratio. If the signal is not self-similar, then the ratio is not
constant and differences are increasingly accentuated by the
raised exponent resulting in a nonlinear scaling.

Since the original Kolmogorov turbulence theory (Kolmo-
gorov 1941) assumes a self-similar scaling, it predicts that the
structure function slope should be one-third the order, or

p 3z = . The dashed purple line indicates this prediction in
Figure 4. The inertial range curves for all five temporal
magnetic measurements in Figure 4(a) sit relatively near the
Kolmogorov theory line but none of the lines exhibit linear
behavior. This indicates that the inertial range fluctuations are
multifractal and not self-similar. The spatial curves in

Figure 4(b) support this observation because they are also
nonlinear, though less pronounced than for the temporal data.
The dissipation range curves, in contrast, are clearly more

linear. This indicates that the dissipation range fluctuations are
monofractal while also having a higher level of intermittency
than inertial range fluctuations. The Hurst exponents for the
dissipation range are consistently about one for the various
measured B values, steeper than the K41 prediction of
H = 1/3.

6. HELICITY SCALING

The structure function analysis is also used to examine the
effect of varying the amount of magnetic helicity in the plasma
on the intermittency and self-similarity of the magnetic
fluctuations. Previous work has shown that the degree of
intermittency in fluctuations of B dB dt˙ = (not B), as
determined by a calculation of the flatness, increases on
average with an increasing amount of injected magnetic
helicity (Schaffner et al. 2014c). This work revisits that result
by examining the trend in B using unnormalized structure
functions and the resulting relationship between structure
function slope and p.
Figure 5 shows the slope versus the order for eight different

helicity states for inertial range fluctuations (solid lines) and
dissipation range fluctuations (dashed lines). Recalling that the
steepness of the slope is indicative of a relative degree of
intermittency, the order of the inertial range curves for each

Figure 3. Normalized fourth order structure functions (a.k.a flatness or
kurtosis) for temporal (left) and spatial (right) measurements. The flatness of a
Gaussian signal is indicated by the dashed line at F = 3. Both figures show
increasing flatness with decreasing scale, indicating a rise in intermittency.

Figure 4. Scaling exponent, ζ, as a function of structure function order, p for
temporal (upper) and spatial (lower) measurements. Inertial range scaling is
indicated by the bold lines, while dissipation range scaling is indicated by
dashed lines. Temporal scaling shows a clear distinction between multifractal
(nonlinear ζ vs. p) in the inertial range and monofractal (linear ζ vs. p) in the
dissipation range. The different color curves indicate the type of magnetic
structure function used (i.e., B-component, B-vector magnitude, etc.)
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helicity indicates increasing intermittency with increasing
helicity, which is again consistent with the findings for an
analysis of Ḃ time series (Schaffner et al. 2014c). However, the
structure function analysis here further shows that with the
exception of the zero helicity state, the inertial range turbulence
for any helicity is not self-similar. The dissipation range lines,
however, show that the dissipation range intermittency is self-
similar regardless of the amount of injected magnetic helicity in
the plasma.

7. DISCUSSION

The observation of both multifractal and monofractal scaling
of magnetic fluctuation structure functions in SSX has
implications for both the dissipative nature of the turbulence
and for the universality of MHD turbulence. Like that observed
in Kiyani et al. (2013), the transition between multifractal
scaling of the inertial range and monofractal scaling of the
dissipation range is rapid. This suggests that the dissipation
mechanism is independent of the scale of the turbulence
structures—in other words, the dissipation scale is absolute
rather than relative. This is in contrast to the predictions and
observations made for hydrodynamic turbulence where visc-
osity is the known dissipation mechanism. In those cases, each
scaling exponent has a corresponding dissipation scale due to
the viscosity. As smaller and smaller scales are approached, the
viscosity “shuts-off” the scaling exponents gradually producing
a scaling transition region from multifractal inertial to
monofractal dissipation ranges (Benzi et al. 1984; Frisch &
Vergassola 1991). If the dissipation mechanism has an absolute
scale, independent of each scaling exponent, then a rapid
transition would be observed as this absolute scale is passed.
Kiyani et al. (2010) discusses the possibility that a dissipation
scale associated with the ion inertial length may be at play.
However, it is often difficult to distinguish the ion gyroscale

( ir ) effects versus ion inertial scale ( id ) effects in super-
Alfvenic solar wind since 1b » . This laboratory turbulence,
however, has a more resolved separation between ir and id
(Schaffner et al. 2014a), and the results presented here show the
multifractal to monofractal scaling transition occurring at
around id rather than ir . Though evidence for the existence of
current sheets has been demonstrated in previous SSX
experiments on reconnection using stable spheromaks (Brown
et al. 2012), more concrete evidence for the presence of current
sheets in this more turbulent SSX plasma is still being sought;
however, there is preliminary evidence from the helicity scan
work (Schaffner et al. 2014c) that these current sheets may
indeed be present. These current sheets, then, could play the
role of an absolute dissipation scale. It should be noted,
however, that an alternative solar wind intermittency analysis
(Alexandrova et al. 2008) does not exhibit a transition in
scaling from inertial to dissipation range and the authors of this
work suggest the existence of a compressible inertial range
cascade rather than a dissipation range.
Another interesting comparison between the results in

Kiyani (2013) and those presented here is the difference in
collisionality. The solar wind is a collisionless plasma with
mean-free path lengths on the order of an astronomical unit
(AU). The SSX plasma, while still fully ionized, is a collisional
plasma with ion mean-free path lengths on the order of 0.1 cm,
a bit less than one order of magnitude smaller than the ion
inertial length (Schaffner et al. 2014a). While in MHD
turbulence theory, resistivity can be thought to play a role for
magnetic turbulence as viscosity would for velocity turbulence,
the resistivity does not appear to have the same affect for
dissipation given the comparison in scaling between the
collisionless solar wind and the collisional laboratory plasma.
This result begs the question of what role ion viscosity might
have in the turbulent dissipation process as well as indicate
possible universality of MHD turbulence regardless of
collisionality.

8. CONCLUSIONS

This paper has presented the results of a detailed structure
function analysis of turbulent magnetic fluctuations in a
laboratory plasma experiment. The structure functions indicate
a distinction between multifractal scaling in inertial range
regimes and mononfractal scaling in dissipation range regimes.
Multifractal scaling is observed in both temporal fluctuations as
well as spatial fluctuations. Monofractal scaling is seen only in
temporal fluctuations due to the limitations of spatial measure-
ment resolution. The work also shows that intermittency and
scaling can be modified by the magnetic helicity of the
turbulent plasma; increasing helicity corresponds to increased
intermittency in the inertial range and modification of the
scaling exponents as a function of order. However, helicity
does not appear to affect the monoscaling results of the
dissipation scale. These results compare favorably to a similar
analysis of inertial range and dissipation range turbulence in the
solar wind (Kiyani et al. 2013), which suggests some amount of
universality between the two MHD systems despite differences
in collisionality.

The authors would like to acknowlege fruitful discussions
with Peter Weck. This work has been funded by DOE OFES
and NSF CMSO.

Figure 5. Scaling exponent vs. order for different values of magnetic helicity
(as set by the amount of initial flux in the plasma gun; Schaffner et al. 2014c).
Inertial range intermittency increases with helicity as shown by increasingly
steeper curves in the inertial range. The dissipation range scaling appears to be
unaffected by the change in helicity.
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