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Interaction, Insensitivity to Cholesterol, and Perturbed 
Interdomain Coupling

Alice L. Herneisen†, Indra D. Sahu‡, Robert M. McCarrick‡, Jimmy B. Feix§, Gary A. 
Lorigan‡, and Kathleen P. Howard*,†

†Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 
19081, United States

‡Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States

§Department of Biophysics, National Biomedical EPR Center, Medical College of Wisconsin, 
Milwaukee, Wisconsin 53226, United States

Abstract

Influenza A M2 is a membrane-associated protein with a C-terminal amphipathic helix that plays a 

cholesterol-dependent role in viral budding. An M2 mutant with alanine substitutions in the C-

terminal amphipathic helix is deficient in viral scission. With the goal of providing atomic-level 

understanding of how the wild-type protein functions, we used a multipronged site-directed spin 

labeling electron paramagnetic resonance spectroscopy (SDSL-EPR) approach to characterize the 

conformational properties of the alanine mutant. We spin-labeled sites in the transmembrane (TM) 

domain and the C-terminal amphipathic helix (AH) of wild-type (WT) and mutant M2, and 

collected information on line shapes, relaxation rates, membrane topology, and distances within 

the homotetramer in membranes with and without cholesterol. Our results identify marked 

differences in the conformation and dynamics between the WT and the alanine mutant. Compared 

to WT, the dominant population of the mutant AH is more dynamic, shallower in the membrane, 

and has altered quaternary arrangement of the C-terminal domain. While the AH becomes more 

dynamic, the dominant population of the TM domain of the mutant is immobilized. The presence 

of cholesterol changes the conformation and dynamics of the WT protein, while the alanine 

mutant is insensitive to cholesterol. These findings provide new insight into how M2 may facilitate 

budding. We propose the AH−membrane interaction modulates the arrangement of the TM 

helices, effectively stabilizing a conformational state that enables M2 to facilitate viral budding. 
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Antagonizing the properties of the AH that enable interdomain coupling within M2 may therefore 

present a novel strategy for anti-influenza drug design.

Abstract

The influenza A virus is a persistent source of morbidity and mortality worldwide.1,2 An 

atomic-level understanding of how the virus assembles and buds from the host cell plasma 

membrane could serve as the basis for new antiviral strategies inhibiting influenza 

infectivity.3 Recent studies suggest that the viral coat and core proteins work in concert to 

promote budding.3 Here, we examine the conformational properties of one member of the 

budding machinery, the M2 protein, as well as a mutant deficient in viral budding.

M2 is a homotetrameric, 97-residue membrane-bound protein that orchestrates several 

essential events in the influenza A infection cycle.3,4 The determinants for the separate 

functions of M2 are encoded in different protein domains (Figure 1A). Residues 25−46 

associate into a homotetrameric, α-helical transmembrane (TM) domain with ion channel 

activity necessary for viral uncoating.4 Less is known about the structure of the N-terminal 

ectodomain (residues 1−25) and C-terminal cytoplasmic tail (residues 46−97). However, 

numerous recent studies have explored the role of the C-terminal domain in influenza 

morphology and infectivity.5–10

In particular, recent research efforts have examined the role the M2 cytoplasmic domain 

plays in viral budding.12–14 In vitro assays revealed that the full-length M2 protein, as well 

as just the region spanning residues 46−62, is sufficient to generate the type of curvature 

necessary for constricting the budding viral neck15 and induce budding in giant unilamellar 

vesicles.12 Several biophysical techniques, including solution NMR,16,17 solid-state 

NMR18,19 (SSNMR), and electron paramagnetic resonance20,21 (EPR), have demonstrated 

that M2 residues 47−62 form an amphipathic helix associated with the membrane surface.

Amphipathic helices (AHs) promote membrane remodeling in several systems,22–24 

presumably by inserting into the membrane and reorienting lipids to induce curvature. 

Several groups have shown that replacing five hydrophobic residues of the M2 AH with 

alanine—F47A, F48A, I51A, Y52A, and F55A (Figure 1C)—abolishes M2 curvature-

generation and budding activity in vitro and leads to a budding-defective morphology in vivo 

without affecting M2 ion channel function.12–15,25,26 The penta-alanine mutant, which we 

designate “M2−5Ala”, offers a valuable opportunity to characterize the structural and 

dynamic properties of M2 necessary for viral budding.
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Several constructs of the M2 protein have been studied by a range of high-resolution 

biophysical techniques, including X-ray crystallography,27,28 solution NMR,16,17 and 

SSNMR.18,29–32 The method we employ here, site-directed spin labeling EPR spectroscopy 

(SDSL-EPR), is a powerful tool for characterizing membrane protein structure and 

dynamics33,34 and offers complementary information to previously published structural 

work on the M2 protein. A strength of SDSL-EPR is the ability to study membrane proteins 

embedded in lipid bilayers, which is particularly important for characterizing the membrane-

remodeling behavior of M2. SDSL-EPR methods can detect mobility and conformational 

exchange events on time scales not accessible to other spectroscopic techniques,35 distances 

in the range of ~12−60 Å,34 and topology of a protein with respect to the membrane.33 Our 

group has used SDSL-EPR to characterize the sensitivity of the M2 TM and AH domains to 

the surrounding environment.20,21,36–39 We demonstrated that the M2 AH exists in 

conformational equilibrium and undergoes cholesterol-dependent conformational exchange.
39 We hy pothesized that this conformational exchange is relevant for M2 scission function 

at the edge of the viral budozone,12,13 which is enriched in cholesterol.40,41

Here, we seek a structural understanding of the M2-5Ala mutant with the goal of gaining 

insight into how the wild-type (M2-WT) protein functions. In principle, a detailed 

understanding of the viral budding process could aid in the development of novel strategies 

for anti-influenza drug design.

To investigate how the mutations within M2-5Ala impact conformation and dynamics, we 

spin-labeled sites in both the C-terminal TM and AH domains, and collected SDSL-EPR 

data. We demonstrate that compared to M2-WT, the dominant population of M2-5Ala is 

more dynamic, shallower in the membrane, and has an altered quaternary arrangement of the 

C-terminal domain. Whereas M2-WT experiences notable changes in conformation, 

dynamics, and membrane topology upon the addition of cholesterol, M2-5Ala remains 

insensitive to the presence of cholesterol. Our data are consistent with the AHs sensing the 

properties of the membrane and regulating the arrangement of the TM helices, effectively 

stabilizing an overall shape of the protein optimal for viral budding.

MATERIALS AND METHODS

Purification, Spin Labeling, and Membrane Reconstitution of Full-Length M2-WT and 
M2−5Ala Cysteine Mutants.

Cysteine substitutions were introduced into a cysteineless background plasmid based on the 

A/Udorn/72 sequence,42 referred to as “M2-WT”, using site-directed mutagenesis. The 

F47A, F48A, I51A, Y52A, and F55A mutations were introduced into the M2-WT plasmid to 

generate the “M2-5Ala” plasmid, which was used for further cysteine mutagenesis. Verified 

single-cysteine plasmids were transformed into C43 competent cells for protein expression. 

Expression, purification, and spin labeling were performed according to previously 

published protocols21 with minor modifications described in the Supporting Information 

Materials and Methods. The purity of protein was verified using sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE).
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We spin-labeled sites in the C-terminal TM and AH domain of M2-WT and M2-5Ala 

(Figure 1). To probe properties of the TM, we labeled site L43. This residue faces away from 

the pore of the channel, and previous electrophysiology studies of full-length M2 

demonstrated that cysteine mutagenesis at this site does not significantly affect ion channel 

behavior.43,44 To probe the properties of the AH, we labeled a site on each face of the helix 

(H57 and L59).

Protein was reconstituted into 4:1 1-palmitoyl-2-oleoyl-snglycero-3-phosphocholine/-

palmitoyl-2-oleoyl-sn-glycero-3-phospho-1-rac-glycerol (POPC/POPG; “− cholesterol”) and 

56:14:30 POPC/POPG/cholesterol (“+ cholesterol”) lipid bilayers as previously described.21 

This membrane system was chosen for its use in in vitro budding assays12 and previous 

SDSL-EPR studies of the M2 protein.20,21,37,39

EPR Spectroscopy and Data Analysis.

Continuous Wave EPR Spectra.—Continuous wave EPR (CW EPR) spectra were 

recorded at room temperature on an X-band Bruker EMX spectrometer equipped with an 

ER4123S resonator. Proteoliposomes were prepared at a peptide/lipid ratio of 1:500 in 50 

mM Tris, pH 7.8, 100 mM KCl, 1 mM EDTA buffer. Samples were placed in 0.6 mm 

internal diameter, 0.9 mm length gas permeable capillary tubes (L&M EPR Supplies, 

Milwaukee, WI). CW EPR spectra were acquired using 2 mW incident microwave power, 1 

G field modulation amplitude at 100 kHz, and 150 G sweep width.

Paramagnetic Accessibility Measurements.—Power saturation experiments were 

used to detect the oxygen accessibility of spin labels.45 Experiments were run at room 

temperature on an X-band Bruker EMX spectrometer equipped with an ER4123S resonator. 

Proteoliposomes were prepared at a peptide/lipid ratio of 1:500 in 50 mM Tris, pH 7.8, 100 

mM KCl, 1 Mm EDTA buffer. Samples were placed in 0.6 mm internal diameter by 0.9 mm 

length gas permeable capillary tubes (L&M EPR Supplies, Milwaukee, WI). Power 

saturation experiments were performed under nitrogen gas or equilibrated with ambient air. 

EPR spectra were collected over eight power levels for nitrogen power saturation 

experiments. For oxygen power saturation experiments, spectra were collected over 16 or 19 

power levels for sites with moderate or high accessibility to oxygen, respectively. Data were 

fit to obtain ΔP1/2 parameters as described previously.20

Saturation Recovery Measurements.—Saturation recovery EPR (SR EPR) 

experiments were carried out at the National Biomedical EPR Center (Milwaukee, WI) on a 

home-built instrument operating at X-band (9.4 GHz) equipped with a loop-gap resonator, as 

previously described.39 The resulting SR signals were fitted with single- and biexponential 

decay functions using Origin software (OriginLab, Northampton, MA). Bimolecular 

collision rates with oxygen, Wx(O2), were calculated from spin−lattice relaxation rates (We) 

according to the relationship Wx(O2) = We(O2) − We(N2), where We = 1/2T1.

Double Electron−Electron Resonance Measurements.—Double electron−electron 

resonance (DEER) experiments were carried out at the Ohio Advanced EPR Laboratory at 

Miami University, Ohio, on a Bruker ELEXSYS E580 spectrometer equipped with a 
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SuperQ-FT pulse Q-band system with a 10 W amplifier and EN5107D2 resonator. DEER 

samples were prepared as lipodisq nanoparticles with a peptide/lipid ratio of 1:300, as 

previously described.39,46 All DEER samples were prepared at a spin label concentration of 

100−130 μM. Glycerol (30% w/w) was used as a cryoprotectant. The sample was loaded 

into a 1.1 mm inner diameter quartz capillary (Wilmad LabGlass, Buena, NJ) and mounted 

into the sample holder inserted into the resonator. DEER data were collected using the 

standard four-pulse sequence24 [(π/2)ν1 − τ1 − (π)ν1 − t − (π)ν2 − (τ1 + τ2 − t) − (π)ν1 − τ2 

− echo] at Q-band with a probe pulse width of 10/20 ns, pump pulse width of 24 ns, 80 MHz 

of frequency difference between probe and pump pulse, shot repetition time determined by 

spin−lattice relaxation rate (T1), 100 echoes/point, and 2-step phase cycling at 80 K 

collected out to ~2.0 μs for overnight data acquisition time (~12 h). DEER data were 

analyzed using DEER Analysis 2015.47 The distance distributions, P(r), were obtained by 

Tikhonov regularization48 in the distance domain, incorporating the constraint P(r) > 0. A 

homogeneous two-dimensional model was used for background correction. The 

regularization parameter in the L curve was optimized by examining the fit of the time 

domain.

Circular Dichroism Spectroscopy and Data Analysis.

CD spectra were collected on an Aviv model 435 circular dichroism spectrometer at 25 °C. 

Samples had a protein/lipid ratio of 1:200 and were reconstituted into bicelles.17 Bicelles 

with a q = 0.5 were prepared through the addition of 1,2-dihexanoyl-sn-glycero-3-

phosphocholine (DHPC) to protein reconstituted in POPC/POPG 4:1 liposomes. The buffer 

used to collect CD data was 10 mM Tris, pH 7.8, 20 mM KCl, 1 mM EDTA. A 35 μL 

aliquot of sample was loaded into 0.011 cm path length demountable quartz cuvette. Spectra 

were collected from 280 to 190 nm with a 1.0 nm step size. The averaging time at each point 

was 10.0 s, and the bandwidth was 1.0 nm. Three scans were collected and averaged. A 

bicelle spectrum collected in the absence of protein was used to correct for background due 

to lipids and buffer. Spectral data collected directly from the instrument were converted from 

units of millidegrees to per residue molar absorption units (Δε, in units of M−1 cm−1). 

Secondary structure estimates were obtained from the DichroWeb server49 using the 

CDSSTR analysis program50 and a reference set appropriate for membrane proteins.51,52

RESULTS

Alanine Mutations Lead to Large Changes in Mobility.

TM is Immobilized in M2−5Ala Relative to M2-WT.—To probe the impact of the C-

terminal alanine mutations on the TM domain, we spin-labeled a site located at the end of 

the TM helix just prior to the start of the AH (L43; Figure 1). The spectral line shapes of 

spin-labeled residues provide insight into conformational dynamics that reflect both 

backbone motion as well as secondary and tertiary contacts.45

In Figure 2 (top), we show an overlay of the CW EPR spectra of the TM site 43 in both M2-

WT (black) and M2− 5Ala (red). The spectra are a superposition of a broad, immobilized 

component (i), and a sharper, mobile component (m). In a previous study of M2, we 

characterized the multicomponent nature of M2-WT CW line shapes and established that 
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they arose from an equilibrium involving two different conformational substates of the 

protein.39 The M2-5Ala spectrum shown in Figure 2 exhibits a more prominent immobile (i) 

peak than the corresponding M2-WT site, indicating that the equilibrium of the mutant TM 

helices is shifted markedly toward an immobile population.

AH Is More Dynamic in M2-5Ala Relative to M2-WT.—To probe the properties of the 

AH region of M2-5Ala, we spin-labeled a site on each face of the AH (H57 and L59; Figure 

1). In Figure 2, we show an overlay of the CW EPR spectra of M2-WT and M2-5Ala for AH 

sites 57 and 59. For both these AH sites, the mobile spectral component (m) is considerably 

more pronounced in M2-5Ala. Thus, the equilibria of the TM and AH in M2-5Ala shift in 

opposite directions relative to M2-WT: while the immobile component is more populated in 

the M2-5Ala TM, in the M2-5Ala AH, the immobile component is less populated.

Both M2-5Ala and M2-WT are in Conformational Equilibrium.

In a previous study of M2, we used SR EPR to demonstrate that multicomponent CW line 

shapes, similar to those shown in Figure 2, arose from an equilibrium involving two different 

conformational substates of the M2 protein.39 In our earlier work, we used a truncated 

construct, M2-WT(23−60). To confirm that conformational exchange is indeed a property of 

the full-length protein, and not an artifact of using a truncation, we collected SR data for 

both full-length M2-WT as well as M2-5Ala.

In an SR experiment, an intense saturating pulse is applied at the frequency of the central 

resonance line of the nitroxide. In a spin label system undergoing fast rotameric exchange, 

the signal recovery is monoexponential. In contrast, spin labels in conformational exchange 

undergo a biexponential recovery.35,39

As shown in Figure 3, the SR curves for both M2-WT (Figure 3A) and M2-5Ala (Figure 3B) 

are best characterized by a biexponential recovery. Furthermore, the T1 values obtained from 

the fits are consistent with protein conformational exchange (Table S1).35 Biexponential 

recovery consistent with protein conformational exchange was also obtained for site 57 in 

both M2-WT and M2-5Ala (Figure S1; Table S1).

The Dominant Population of the M2-5Ala AH Is further from the Membrane Surface.

It has been hypothesized that the loss of budding function for M2-5Ala results from 

decreased interaction of the AH with the membrane surface due to the reduction in the 

hydrophobic moment of the AH helix (Figure 1B,C).12,13 To test this hypothesis, we probed 

the membrane depth of the M2-5Ala AH using two complementary EPR methods, SR and 

power saturation.

The spin−lattice relaxation rates measured using SR techniques can be modulated by the 

presence of paramagnetic relaxation agents such as oxygen. The relaxation rate of the 

nitroxide spin label, We, is proportional to the collision rate of the label with the relaxation 

agent.35 Oxygen is a lipophilic species that partitions in a gradient across the membrane, 

with the highest O2 concentration at the center of the bilayer. An accessibility constant, jx, 

that reports on the membrane accessibility of the spin label can be obtained by measuring 

Wx at several different O2 concentrations and calculating the slope of a linear best-fit line.35
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The insets of Figures 3 and S1 show the dependence of the spin−lattice relaxation rates on 

the concentration of oxygen for M2-WT and M2-5Ala. The jx value of the M2-5Ala fast 

component is notably smaller than that of M2-WT (Figure 3C; Table S1), indicating that the 

M2-5Ala mobile conformation has AHs shallower in the membrane than the corresponding 

M2-WT conformation. The jx values of the M2-WT and M2−5Ala slow components are the 

same within error (Figure 3C; Table S1), indicating that the M2-WT and M2−5Ala 

immobile conformations share similar membrane topology.

To further probe the membrane topology of the AH domains, we performed power saturation 

(PS) EPR experiments. The PS method measures changes in the relaxation efficiency of a 

spin label in the presence of paramagnetic reagents.45 Because oxygen partitions into the 

hydrophobic environment of the bilayer, the collision rate of the spin label with O2, 

quantified by the ΔP1/2(O2) parameter, serves as a measurement of membrane accessibility 

complementary to SR.45 A comparison of the PS profiles of M2-WT and M2-5Ala sites is 

shown in Figure S2. Consistent with SR EPR results showing that the most populated 

conformation of M2-5Ala is shallower in the membrane than M2-WT, the M2-5Ala sites 

exhibit a lower oxygen accessibility than the corresponding M2-WT residues.

M2-5Ala Exhibits Altered Quaternary Arrangement within the Homotetramer.

The data presented above demonstrate that the AHs of M2-WT and M2-5Ala differ both in 

dynamics and membrane depth. We next explored whether M2-WT and M2-5Ala differ in 

the arrangement of AHs within the homotetramer.

DEER EPR can measure distances from ~20−60 Å and has been successfully applied to 

membrane proteins,34,53 although resolving distances in homo-oligomeric proteins like M2 

has proven to be challenging.54 A single labeled site in a homotetramer with a single 

conformation would lead to two measurable distances resulting from subunits that are 

adjacent and diagonal in the tetramer (Figure S3). With the two distinct conformations of 

M2-WT identified by SR EPR measurements, we can thus predict four unique distances. 

However, because of the similar values of distances between symmetry-related sites within 

the homotetramer as predicted from published M2 structures18 (Figure S4), a broad 

overlapped distribution may be expected.54

We collected DEER data for M2-WT and M2-5Ala AH sites 57 and 59. As shown in Figure 

4 (black lines), the distance distributions of site 59 in M2-WT and M2-5Ala exhibit striking 

differences. The maximum of the distance distribution shifts from ~47 Å in M2-WT to ~27 

Å in M2-5Ala, indicating a large rearrangement of subunits and/or rotation of the AHs 

within the homotetramer. The lack of well-defined oscillations within the time domain data, 

typical for membrane proteins in lipid bilayers, prevents the extraction of the four well-

defined distances expected for two conformations of a homotetramer.46,55 However, site 57 

similarly exhibits a shift in DEER distance distributions (from a maximum of ~48 Å in M2-

WT to ~34 Å in M2-5Ala; Figure S5), further supporting the existence of a large difference 

between M2-WT and M2-5Ala in the orientation of their C-terminal domains.

It is instructive to compare our experimental DEER data to a published SSNMR model M2-

WT in lipid bilayers (PDB 2L0J).18 We used mtsslWizard56 to generate conformational 
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ensembles of the site 57 and 59 spin labels in silico and simulate a distance distribution 

between the four symmetry-related sites (Figure S4). Overlays of the simulated distance 

distributions with experimental DEER data reveal marked differences. The simulated 

distribution for site 59 yields a broad peak at ~20 Å, which is a much shorter distance than 

the experimentally observed bimodal peaks at ~32 and ~47 Å. One possible reason for the 

discrepancy between our measured DEER distances and those simulated from the published 

SSNMR model is that the SSNMR model used a truncated construct M2(22–62), whereas 

our DEER data are for full-length M2. However, we also observed discrepancies between 

the SSNMR model and DEER distances in our previously published study on M2-WT(23–

60).39

Cholesterol Immobilizes M2-WT while M2-5Ala is Insensitive to Cholesterol.

The M2 protein is proposed to bind cholesterol,13,40 but biochemical studies have shown 

that M2-5Ala does not coimmunoprecipitate with cholesterol in vivo.13 We compared how 

M2-WT and M2-5Ala respond in terms of conformation and dynamics to the addition of 

cholesterol.

In Figure 5A, we show CW EPR spectra of M2-WT and M2-5Ala in 4:1 POPC/POPG 

bilayers with (red) and without (black) cholesterol. In M2-WT, the addition of cholesterol to 

the membrane increases the relative intensity of the immobile component for sites 43 and 

57. The site 59 line shape in M2-WT shows only minor changes between samples with and 

without cholesterol. We also spin-labeled three additional M2-WT AH sites (51, 55, and 60) 

and observed the general pattern that the growth in the immobile population is greatest for 

C-terminal sites close to the TM domain and becomes attenuated at distal residues (Figure 

S6). In a previous study using truncated M2-WT(23−−60), we also observed a shift toward a 

more immobile population of the AH in the presence of cholesterol.39

M2-5Ala line shapes both with and without cholesterol are shown in Figure 5B. Intriguingly, 

the 5Ala site 43 line shape is nearly superimposable in the presence and absence of 

cholesterol. For sites 57 and 59, the intensity of the immobile peak increases only slightly 

upon the addition of cholesterol, and the mobile population is still predominant.

We performed SR EPR experiments to assess whether the multicomponent nature of the CW 

line shapes in Figure 5 arises from conformational equilibria. The saturation curves for both 

M2-WT and M2-5Ala AHs in membranes with cholesterol are best characterized by 

biexponential fits with two unique spin−lattice relaxation rates (Figure S7), consistent with 

the existence of conformational exchange.

M2-5Ala Membrane Topology, Quaternary Arrangement, and CD Profiles are Insensitive to 
Cholesterol.

Unlike M2-WT, CW line shapes of M2-5Ala demonstrated no striking changes upon the 

addition of cholesterol. We next compared M2-WT and M2-5Ala responses to cholesterol in 

terms of membrane topology, quaternary arrangement, and CD profiles.

In a previous study using truncated M2-WT(23−60), we demonstrated that the AH shifts 

toward a conformation that is less membrane-buried in the presence of cholesterol.39 Here 
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we tested whether this observation was true for full-length M2-WT. As seen for truncated 

M2, all three of our full-length M2-WT sites (43, 57, and 59) exhibit decreased accessibility 

to oxygen in the presence of cholesterol (Figure S8). In marked contrast, the oxygen 

accessibilities of the same sites in M2-5Ala do not greatly change upon the addition of 

cholesterol (Figure S8), consistent with the highly attenuated ability of M2-5Ala to sense 

and respond to the presence of cholesterol.

Previously we demonstrated that the AHs in truncated M2-WT(23−60) become more tightly 

packed within the homotetramer in the presence of cholesterol.39 The DEER data we 

collected here demonstrate that full-length M2-WT also becomes more tightly packed in the 

presence of cholesterol. Figures 4A (site 57) and S5 (site 59) show the distance distributions 

of M2-WT AH sites in membranes with (red lines) and without (black lines) cholesterol. 

Adding cholesterol to the membrane results in a shift toward shorter distances for M2-WT, 

consistent with the population shifting toward the more tightly packed conformation. In 

contrast, the addition of cholesterol causes only minor changes in the DEER distribution for 

M2-5Ala (Figures 4B and S5), which provides further evidence of the inability of M2-5Ala 

to sense and respond to the presence of cholesterol.

The CD profiles of M2-WT and M2-5Ala with and without cholesterol are shown in Figure 

S9. The CD spectra of both M2-WT and M2-5Ala without cholesterol exhibit two minima 

centered at 207 and 222 nm, which are characteristic of α-helical secondary structure.52 

Differences in the molar absorption between the M2-WT and M2-5Ala are subtle throughout 

the range investigated, suggesting that the five alanine mutations do not grossly alter the 

global secondary structure of the protein. Furthermore, changes in the molar absorption 

upon the addition of cholesterol to both M2-WT and M2-5Ala are minor, suggesting that 

global secondary structure does not change in the presence of cholesterol. CD spectral 

deconvolution shows no marked changes in helical character for either M2-WT and 

M2-5Ala upon the addition of cholesterol (Table S2).

DISCUSSION

M2-5Ala is deficient in viral budding. The inability of M2-5Ala to facilitate viral budding 

has been hypothesized to arise from the loss of AH−membrane interaction, altered 

sensitivity to cholesterol, and impaired “cross-talk” between different protein domains.
12–15,25 To our knowledge, we have for the first time experimentally tested each of these 

hypotheses through a detailed atomic-level comparison of the conformation, dynamics, and 

membrane topology of the full-length M2-WT and M2-5Ala proteins. We discuss each of 

these hypotheses in turn below. Finally, we describe a model for M2-facilitated viral budding 

wherein the membrane interaction of the AHs helps stabilize an arrangement of the TM 

helices necessary for proper budding.

Reduced Interaction of M2-5Ala with the Membrane Surface.

A common hypothesis for the loss of function observed with M2-5Ala is decreased 

interaction of the AH with the membrane surface. Replacing five hydrophobic residues of 

the AH with alanine reduces the hydrophobic moment of the helix (Figure 1B,C). A recent 

study demonstrated that a 16-residue M2-5Ala AH peptide did not insert as deeply into the 
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membrane as the corresponding M2-WT sequence.25 Results presented here for the full-

length protein similarly show that the most highly populated conformation of M2-5Ala is 

not as closely associated with the membrane surface as M2-WT.

Interaction of AHs with membrane surfaces is critical in regulating curvature-sensing and 

curvature-inducing activity in a range of systems.22,23,25,57 Mutations that disturb the hydro-

phobic properties of AHs have been shown to abolish membrane-remodeling activity.
12,15,25,58–63 However, the curvature-generating behavior of amphipathic helices in trans-

membrane proteins has not been as extensively studied.

Loss of Sensitivity of M2-5Ala to the Presence of Cholesterol.

Previously, we showed that truncated M2-WT(23−60) undergoes cholesterol-dependent 

conformational exchange in lipid bilayers.39 M2-WT protein is proposed to bind cholesterol,
13,40 but biochemical studies have shown that M2-5Ala does not coimmunoprecipitate with 

cholesterol in vivo.13 In this study, we sought to provide atomic-level conformational details 

to explain how M2-5Ala differs from M2-WT in its response to cholesterol.

We demonstrated that the addition of cholesterol to full-length M2-WT shifts the 

equilibrium toward the immobile component and changes the quaternary arrangement of the 

C-terminal domain. In contrast, M2-5Ala exhibits only minor changes in dynamics and 

quaternary arrangement when exposed to cholesterol.

The impact of cholesterol on M2-WT has been proposed to arise from changes in the 

membrane surrounding the protein and/or direct binding of cholesterol to the protein.
29,39,40,64 Cholesterol can have a range of impacts on lipid bilayer properties.65 For example, 

a number of studies have shown that cholesterol has a condensing effect on membranes, 

which decreases the ability of membrane-associating helices to penetrate into the lipid 

headgroup region.66–68 In M2-5Ala, the amphipathic helix is further away from the 

membrane surface and therefore is not as sensitive to changes in bilayer properties. 

Furthermore, there is some evidence for a specific cholesterol-binding site within the 

amphipathic helix in the M2 protein.13,40 The alanine mutations could perturb the binding 

site and abolish the direct interaction of the protein with cholesterol.

Impaired Cross-Talk between Different Domains of M2-5Ala.

The AH domain of M2 alone can induce membrane curvature15 and cause budding in giant 

unilamellar vesicles.12 Full-length M2-WT, however, has an enhanced ability to generate 

curvature,15 consistent with the TM domain enhancing curvature generation through protein 

shape effects.15 Our structural work on the full-length M2 protein, both WT and a budding-

deficient mutant, provides a unique opportunity to test the hypothesis that the domains of 

M2 work synergistically to induce curvature.

A cartoon schematic shown in Figure 6 summarizes a model that is consistent with our data. 

Shown on the left in Figure 6 are the most populated conformations of M2-WT and 

M2-5Ala in membranes without cholesterol. The M2-5Ala AHs (orange) are further from 

the membrane surface than the M2-WT AHs (red). Furthermore, M2-5Ala is more tightly 

packed than M2-WT. Although the mutations in M2-5Ala are in the C-terminal domain, the 
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differences in the TM domain could arise from the AHs anchoring the TM helices into the 

membrane surface, effectively stabilizing one of several possible conformational states 

sampled by the TM helical bundle. A number of studies have shown that M2 TM domain 

can sample multiple structural substates.29,36,69

Shown on the right in Figure 6 are the most populated conformations of M2-WT and 

M2-5Ala in the presence of cholesterol. Our model for full-length M2-WT in cholesterol-

containing membranes (Figure 6, top right) favors a conformation that is more compact than 

M2-WT in noncholesterol membranes, consistent with our previously published model of a 

budding-relevant M2 conformation based on SDSL-EPR data of M2(23−60).39

Our model for the conformation for M2-5Ala in cholesterol-containing membranes (Figure 

6, bottom right) is very similar to the conformation of M2-5Ala in membranes without 

cholesterol (Figure 6, bottom left). The lack of membrane interaction of the AHs of 

M2-5Ala eliminates interdomain coupling needed for the TM domain to respond to the 

presence of cholesterol.

We have traced in blue the membrane interaction domains of our models for M2-WT and 

M2–5A in the presence of cholesterol. M2-WT forms a conical, or wedge-like shape (see 

also Figure S4). In contrast to M2-WT, we propose M2-5Ala forms a cylindrical shape 

resulting from the lack of membrane interaction of the AHs. The ability to form a wedge 

shape was previously hypothesized to play a role in M2’s ability to generate curvature.15 

When a transmembrane protein forms a wedge within a lipid bilayer, it can exclude different 

volumes in the two bilayer leaflets and dynamically induce membrane curvature.24

SUMMARY

We have provided new insight into the mechanism of M2-facilitated budding using a 

multipronged SDSL-EPR approach. Numerous studies have characterized the functional 

deficiencies of M2-5Ala12–15,25 but the unique contribution of this study is the detailed 

atomic-level comparison of the conformation, dynamics, and membrane topology of M2-

WT and the budding-deficient M2 mutant (M2-5Ala). Our use of full-length protein in 

membranes has allowed us to test the hypothesis that the AH and TM domains of M2 work 

synergistically to induce membrane curvature. A model consistent with our data incorporates 

coupling between the AH and TM domains of M2. We propose interdomain coupling is 

necessary for the protein to respond to the presence of cholesterol and generate an overall 

protein shape that facilitates viral budding.15 M2 plays a key role in the replication cycle of 

the influenza virus. Antagonizing the dynamic properties of the AH that enable interdomain 

coupling may therefore represent a novel strategy for anti-influenza drug design.
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ABBREVIATIONS

SDSL-EPR site-directed spin labeling electron paramagnetic resonance spectroscopy

SSNMR solid-state NMR

TM transmembrane

AH amphipathic helix

WT wild-type

POPC 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

POPG 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-1-rac-glycerol

CW EPR continuous-wave electron paramagnetic reso nance

SR EPR saturation recovery electron paramagnetic resonance

DEER double electron−electron resonance

CD circular dichroism

PS power saturation

DHPC 1,2-dihexanoyl-sn-glycero-3-phosphocholine
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Figure 1. 
Domain structure of the M2 protein monomer studied here. In vivo, M2 functions as a 

homotetramer. (A) Each M2 monomer consists of an N-terminal ectodomain, a 

transmembrane domain, and a C-terminal cytoplasmic domain. The sequence of the 16 

residues comprising the amphipathic helix (sites 47−62) is shown. Residues in red are 

mutated to alanine in M2-5Ala (F47A, F48A, I51A, Y52A, and F55A). Asterisks (*) 

represent sites (L43, H57, L59) selected for spin labeling studies. (B) Helical wheel 

diagrams and hydrophobic moments (μH) of the M2-WT and (C) M2-5Ala amphipathic 

helices created by HeliQuest.11 Residues charged at pH 7.8 are shown in black, and 

uncharged residues are shown in gray.
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Figure 2. 
EPR line shapes indicate TM site 43 is immobilized in M2-5Ala relative to M2-WT, while 

AH sites 57 and 59 are more mobile in M2-5Ala relative to M2-WT. X-band CW EPR 

spectra of M2-WT and M2-5Ala in 4:1 POPC/POPG bilayers. Each sample contains, on 

average, one spin-labeled monomer per tetramer. Inset shows the low-field immobile (i) and 

mobile (m) peak components.
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Figure 3. 
M2-WT and M2-5Ala exhibit two components in conformational exchange. (A) 

Representative saturation-recovery data and fit for site 59 of M2-WT and (B) M2-5Ala in 

4:1 POPC/POPG bilayers under 40% air. Residuals for mono- and biexponential fits are 

shown below the curve. Inset shows the dependence of We on the concentration of O2 for the 

fast, mobile component (black) and slow, immobile component (red). (C) Oxygen 

accessibility determined from the slopes of the linear best fit lines of data shown in the 

insets.
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Figure 4. 
DEER reveals different distance distributions of spin-labeled site 59 of (A) M2-WT and (B) 

M2-5Ala reconstituted into 4:1 POPC/POPG bilayers without (−) or with (+) cholesterol. 

Background-subtracted dipolar evolution data are shown as black dots with the 

corresponding fits as solid lines. Overlaid distance distributions were normalized to the area 

under the curve. Distances below 20 Å fall below the reliable detection limit of DEER.
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Figure 5. 
M2-WT and M2-5Ala CW line shapes exhibit differing sensitivity to cholesterol. CW EPR 

spectra of (A) M2-WT and (B) M2-5Ala in bilayers without (−) or with (+) cholesterol. The 

low-field immobile (i) and mobile (m) component peaks are indicated.
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Figure 6. 
A cartoon model consistent with experimental data collected from the M2-WT and M2-5Ala 

AH and TM domains. For clarity only two of the four subunits of the M2 homotetramer are 

shown. Furthermore, only the most populated conformation for each set of conditions is 

shown. The addition of cholesterol to the membrane shifts the M2-WT AH population 

toward a more compact conformation. Coupling between the AH and TM causes M2-WT to 

adopt a wedge-like shape that promotes curvature, shaded in blue. The M2-5Ala AH do not 

interact closely with the membrane surface, and consequently the conformation of M2-5Ala 

is insensitive to bilayer properties.
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