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High-resolution three-dimensional NMR structure of the
KRAS proto-oncogene promoter reveals key features of a
G-quadruplex involved in transcriptional regulation
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From the ‡Université Bordeaux, INSERM, CNRS, ARNA laboratory, European Institute of Chemistry and Biology, U1212, UMR 5320,
2 Rue Robert Escarpit, 33000 Pessac, France and §Department of Chemistry and Biochemistry, Swarthmore College,
Swarthmore, Pennsylvania 19081

Edited by Wolfgang Peti

Non-canonical base pairing within guanine-rich DNA and
RNA sequences can produce G-quartets, whose stacking leads to
the formation of a G-quadruplex (G4). G4s can coexist with
canonical duplex DNA in the human genome and have been
suggested to suppress gene transcription, and much attention
has therefore focused on studying G4s in promotor regions of
disease-related genes. For example, the human KRAS proto-
oncogene contains a nuclease-hypersensitive element located
upstream of the major transcription start site. The KRAS
nuclease-hypersensitive element (NHE) region contains a
G-rich element (22RT; 5�-AGGGCGGTGTGGGAATAGG-
GAA-3�) and encompasses a Myc-associated zinc finger-bind-
ing site that regulates KRAS transcription. The NEH region
therefore has been proposed as a target for new drugs that con-
trol KRAS transcription, which requires detailed knowledge of
the NHE structure. In this study, we report a high-resolution
NMR structure of the G-rich element within the KRAS NHE. We
found that the G-rich element forms a parallel structure with
three G-quartets connected by a four-nucleotide loop and two
short one-nucleotide double-chain reversal loops. In addition, a
thymine bulge is found between G8 and G9. The loops of different
lengths and the presence of a bulge between the G-quartets are
structural elements that potentially can be targeted by small chem-
ical ligands that would further stabilize the structure and interfere
or block transcriptional regulators such as Myc-associated zinc fin-
ger from accessing their binding sites on the KRAS promoter. In
conclusion, our work suggests a possible new route for the devel-
opment of anticancer agents that could suppress KRAS expression.

Non-canonical base pairing within guanine-rich DNA and
RNA sequences can produce G-quartets stabilized via eight

hydrogen bonds involving both the “Watson-Crick” and
“Hoogsteen” edges of each guanine. Stacking of the planar
G-quartets (also called a G-tetrad) leads to the formation of a
G-quadruplex (G4).3 G4s are maintained by the presence of
cations such as K� and to a lesser degree Na� and NH4

�. The
stacked G-quartets constitute the nearly invariant core of all G4
structures (1–3). This core is stabilized by cooperation between
three key factors: hydrogen-bonding dipole interactions, metal
coordination, and �-� stacking. The orientations of the loop
regions within G4 structures are tightly related to strand direc-
tionality and give rise to the heterogeneity of G4 structures
(4 – 6). G4 structures interfere with replication (7–9), transcrip-
tion (10 –13), and recombination (14 –16). Bioinformatics anal-
yses have provided evidence that sequences with potential to
adopt G4 are not randomly localized within genomes but are
specifically enriched in particular regions such as telomeres and
promoters of genes (17–20). Proto-oncogenes are particularly
enriched with G4 motifs, whereas tumor suppressor genes are
not (21, 22). The formation of intramolecular G4s has been
studied in vitro for motifs found in different human promoters
regions, including c-myc (23–25), c-kit (26), and bcl2 (27).
G-rich elements found in other proto-oncogenes such as KRAS
have received less attention. KRAS is located on chromosome
12 and encodes a GTP/GDP-binding protein. Previous studies
showed that mutant alleles of KRAS are prevalent in pancreatic,
biliary tract, colorectal, and lung carcinomas (28 –33). Muta-
tions in the KRAS promoter are found in about 30% of these
cases. It is thought that the KRAS oncogene promotes glycolysis
through the activation of downstream signaling pathways (34)
to sustain the energy requirements for uncontrolled cellular
proliferation, thus contributing to survival of cancer cells. The
very high affinity of the RAS GTP/GDP-binding site (picomolar
range) (35, 36) has made it difficult to synthesize molecules that
effectively compete with GTP at millimolar range inside cells to
block KRAS activity (37). It is no surprise that after many
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decades of unsuccessfully battling against the RAS proteins new
strategies in the field of drug design have emerged. Among
those, some target alternative binding sites in the GTPase
domain (38), others target the altered metabolic pathways (39),
whereas some target the mRNA with antisense oligonucleo-
tides (40). Alternatively, several strategies, including ours, tar-
get the promotor region in an effort to block KRAS expression
(41). The KRAS promoter contains a polypurine nuclease-hy-
persensitive element (42) that plays an essential role in tran-
scription. Its deletion results in a significant down-regulation of
KRAS transcription (12, 43, 44). The promoter region of the
KRAS gene comprises more than 500 bp and is susceptible to
digestion by nucleases such as DNase I, micrococcal nuclease,
and other endogenous nucleases (45). A particular sequence
inside the NHE, between positions �327 and �296 nucleotides
upstream of the main transcription initiation site, is particularly
rich in guanines (sequence 32R; Fig. 1A). 32R contains six gua-
nine stretches and is able to form several G4 conformations.
Among those stretches of guanines, two regions overlap and
includes the Myc-associated zinc finger (MAZ)-binding sites,
the recognition sequence for a transcription factor that recog-
nizes GGGCGG and GGGAGG sequences (46). Recent bio-
physical studies using circular dichroism and DMS footprinting
(43, 47) suggest that oligonucleotides corresponding to 32R are
able to adopt different intramolecular G-quadruplex topologies
depending on which G-runs are included. Some of the topolo-
gies were tested as decoys for sequestration of MAZ (48). In
addition, certain G4 structures in this region are stabilized by
G-quadruplex-interacting ligands (12, 13, 43, 49) such as gua-
nidine-modified phthalocyanines that interfere with KRAS
transcription by competing with MAZ and poly(ADP-ribose)
polymerase 1 proteins. Here we studied the conformations
adopted by different stretches within the 32R sequence using

NMR spectroscopy. The G4 conformation revealed by our
studies provides a model that could potentially be used for in
silico drug screening for ligands that stabilize the G4 structure
in the KRAS promoter. The approach targeting unusual motifs
present in genomic DNA is actively being pursued and can be
seen as a new alternative strategy with promising results (1, 28,
29, 41).

Results and discussion

We began our study with circular dichroism (CD) and NMR
analyses of oligonucleotides within the sequence NHE (Fig. 1A).
To make spectral assignments possible, different oligonucleo-
tides were evaluated (supplemental Table S2) with the objective
of identifying a sequence that formed a single G4 conformer
based on the dispersion and intensities of imino peaks observed
in the NMR spectra. The sequence 21R and three other related
sequences display a 1D imino peak pattern that corresponds to
a single conformer as shown by 1D 1H NMR spectroscopy (Fig.
1C). The similar imino signatures suggest the presence of a
predominant conformer within the human NHE of KRAS gene.
The sequence 22RT with a G16 to T16 mutation displayed a
better resolved imino peak pattern and a slightly better stabili-
zation observed by the CD melting studies (Fig. 1B). In addition,
DMS footprinting (50) and our 15N-filtered 1D NMR experi-
ments (results not shown) demonstrated that G16 did not par-
ticipate in the tetrad formation. Oligonucleotides of the native
sequence with four G-tracts, 21R and 22R, and those with single
G16 to T (16G3T) mutations, 21RT and 22RT, respectively,
appeared to adopt a predominant conformation based on anal-
ysis of the imino proton region from 10 to 12 ppm. The
sequence and the respective 1H 1D NMR spectra are presented
in Fig. 1C. Remarkably, 22RT showed a better resolved peak
pattern in both imino and aromatic regions (not shown) than

Figure 1. A, representation of human KRAS gene showing sequences of the NHE (13) and 32R and 21R(46). EX, exon. B, CD spectra of 21R and 22RT KRAS
sequences at 5 �M (left) and CD melting profiles at 3 �M. C, sequences of KRAS NHE fragments (left) and corresponding imino region 1D NMR spectra obtained
at 1 mM strand concentration at 20 °C in a pH 6.5 buffer containing 20 mM potassium phosphate supplemented with 70 mM KCl. mdeg, millidegrees.

NMR structure of a G-quadruplex from the KRAS promoter region
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did 21R or 22R. For stability purposes, we have included an
additional A at the 22RT 3�-end. These modifications resulted
in better imino and aromatic peak resolution when compared
with 22R and 21R. The CD spectral signatures are similar
between 21R and 22RT. The spectrum of each includes a posi-
tive band at 263 nm and a negative band at 243 nm suggestive of
a parallel G4 fold (Fig. 1B, left). The thermal stability of 21R and
22RT was determined through CD melting experiments. The
melting temperatures (Tm) in 90 mM K� were 49.2 � 0.2 and
51.8 � 0.3 °C for 21R and 22RT, respectively (Fig. 1B, right).
The molecularity of 21R and 22RT was assessed by inspecting
the UV-visible melting curves and by diffusion NMR experi-
ments (supplemental Figs. S2 and S3, respectively). The results
demonstrate that both 21R and 22RT fold into a monomeric
structure, inferred from the reversible and superimposable
cooling versus heating UV-visible curves in the concentration
range that spans an order of magnitude from �5 to �50 �M.
These experiments showed that melting transitions are revers-
ible and independent of DNA concentration, demonstrating
that the G4 structures formed by both 21R and 22RT are uni-
molecular. As the melting process was reversible, model-depen-
dent van’t Hoff enthalpies of folding could be calculated. The
�H0

37 values for 21R and 22RT were 164 � 4 and 191 � 7
kJ/mol, respectively. Diffusion NMR spectroscopy was used to
determine the diffusion coefficient value for 22RT. From diffu-
sion-ordered spectroscopy (DOSY) experiments, we obtained a
diffusion coefficient of 1.54 � 10�10 m2 s�1 (logD � �9.81),
which is in the range of those found for monomeric G4 oligo-
nucleotides of similar size such as the human telomeric
sequence (22AG) observed elsewhere (23, 51, 52). The results
support a model where 22RT is monomeric under the experi-
mental conditions probed in this work. For reference, we report
a diffusion value of 8.9 � 10�11 m2 s�1 (logD � �10.05)
obtained for the oligonucleotide KRAS 44R from the NHE
region that contains the sequence 32R at the 5�-end (supple-
mental Table S2). The imino proton spectrum of 22RT is char-
acterized by 10 individually well resolved and sharp peaks in the
10.5-12-ppm region (Fig. 1C) plus one additional broad peak
that was later identified as G19 and G7 overlapped imino peaks.
The imino pattern in this region is often used as a fingerprint for
G4 structures. The pattern observed suggests the formation of
three G-quartets, each involving four imino protons. Based on
the specific intraquartet characteristic guanine H1–H8 NOE
correlations (Fig. 2B), the folding pattern of the 22RT G4
involves three G-quartets: G2�G6�G11�G18, G3�G7�G12�G19,
and G4�G9�G13�G20 (Fig. 2). For clarity, we have selected the six
lowest-energy structures after refinement of the best 20 struc-
tures with a heavy atom r.m.s.d. value of �1.5 Å (Fig. 3). When
depicted against the calculated mass-weighting principal axis,
the tetrad core is placed with its averaged planes almost in a
perpendicular fashion (Fig. 3). The G3�G7�G12�G19 residues
form the central tetrad of the quadruplex core as the imino
protons on these residues are better protected from water/deu-
terium exchange than are those of other guanines of 22RT (sup-
plemental Fig. S4). In addition and as expected, the guanines in
a central G-quartet have by far the strongest NOE inter-residue
connectivities between exchangeable protons (e.g. NH2/H1),
supporting the increased protection of these protons from

exchange with water. Interestingly, G3 is the only base that has
NOE cross-peaks to both amino-exchangeable protons (NH21/
NH22). These protons are probably protected by the single-
nucleotide chain reversal C5 loop, which bridges and com-
pletely blocks the groove between G3 and G7. The 22RT G4 has
an 	30° helical twist on average and a rise of 3.4 Å for each
G-tetrad step. On average, the four grooves are of medium size
with similar widths in the range of 12 � 2 Å as defined by the
distances between phosphates of opposing guanines in the
structure. The orientations of the aromatic bases toward
the sugars are determined by the conformation of the glycosidic
bond angle, which is determined by the intraresidue NOE cor-
relation intensities between the H8 aromatic proton and H1�
sugar proton. All the guanine glycosidic torsion angles are in
the anti conformation as reflected by the medium/low intra-
guanine NOE cross-peaks observed between H8 and H1� pro-
tons (Fig. 2A). These glycosidic torsion angle conformations are
expected for a parallel G4 as suggested by the CD spectra of
22RT (Fig. 1B). Our CD and NMR results are consistent and
indicate that 22RT adopts a parallel G4 as shown schematically
in Fig. 2C. The three G-tetrads are connected by four linkers:
two single-residue loops (C5 and T10), a bulge (T8), and one
four-nucleotide loop (A14, A15, T16, and A17). C5 and T10
each form double-chain reversal loops that allow these single
residues to bridge three G-tetrad blocks. Inspection of r.m.s.d.
values and conformation diversity for C5 indicates hingelike
motions parallel to the mass-weighting principal axis. The T10
base is oriented toward the 3�-end of the oligonucleotides, and
fewer distinct conformers are observed. Interestingly, T8 forms
a bulge projected out of the G-tetrad core. Although over
700,000 G-quadruplexes with single or multiple bulges may
exist in the human genome (53, 54), only a few G-quadruplex
structures have been deposited in the Protein Data Bank, and
besides our model, only another deposited structure (Protein
Data Bank code 2M4P) has a bulge between G-tetrads. This
unusual structural feature within the 3D fold may be attractive
to design ligands specific for KRAS G4 in silico. The fourth
linker is composed of A14, A15, T16, and A17 and forms a
medium-size propeller loop that crosses all three tetrads. The
size of the loop allows several water molecules to fit between the
G4 core surface and the loop residues. At both oligonucleotide
extremities, two adenine residues, A1 and A22, cap the 5�- and
3�-ends of 22RT, respectively (Fig. 3). A1 interacts with A17,
and both are tilted inward, capping the G4 core surface at the
5�-end. At the 3�-end, A21 and A22 interact through �-� stack-
ing and are tilted toward the tetrad surface, which is much more
exposed to the solvent than the opposite end (Fig. 3b). In most
of the lowest energy conformers, A21 partially blocks one of the
grooves. T10 shows a profile slightly different from T8 and T16.
T10 methyl protons do not make cross-correlations with any
other proton except with T10 H2�/H2
, and the cross-peak with
its own H1� is very weak, indicating free rotational motion
around the C1� and N1 of the pyrimidine base without any
appreciable out-of-axis torsion of the base. For T8, we observe
low-intensity NOEs, which indicate that the T8 methyl slightly
interacts with G4 and G9; there is a low-intensity cross-corre-
lation between the T8 methyl and the G9 H8 and a very weak
correlation from the methyl of T8 to G4 H1, indicating that the

NMR structure of a G-quadruplex from the KRAS promoter region
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methyl may be positioned in the edge of the top tetrad. Finally,
both sugar CH2 protons of T16 have strong cross-peaks with
the A17 H6 and H8 protons, not observed in any other of the
two thymines. Overall, we observe a more restricted mobility of
T16 compared with the other two thymines. Fig. 3a shows the
ensemble of structures chosen by the lowest total energy crite-
rion. Structures were refined in water and deposited under Pro-
tein Data Bank code 5I2V. Of the 11 structures deposited, only
six are shown in Fig. 3 for clarity. Two K� counterions are
expected per conformer coordinated between three G-quartet
planes. In the ribbon diagrams shown in Fig. 3b, the ribbon
thickness is proportional to the all-atom r.m.s.d. A1 and T8
have the highest r.m.s.d. values (�3.5 Å) of all nucleotides in the
molecule. This was expected as these two residues have fewer
inter-residue correlations in the NOESY spectra. The propel-
ler-type loops are also characterized by above average r.m.s.d.

fluctuations. G-quadruplexes are highly polymorphic, and
sequences with G4-forming potential are suggested to be
formed in different key genomic regions, mainly in telomeres
and gene promoters. Recently, high-resolution models of sev-
eral different folding topologies have been reported, and some
were highlighted in the aim to develop interesting pharmaco-
logical compounds that could be exploited as new anticancer
drugs (47, 55– 64). The G4 structure presented here is in agree-
ment with the topology calculated for 21R (50) using DMS foot-
printing and may serve as a template to target and design new
drugs that may diminish or inhibit KRAS expression. Interest-
ingly, our structure contains a four-residue loop that covers one
of the four grooves. It is well documented that the stability of G4
structures somewhat decreases as bulge and loop sizes increase
(65, 66). We observed a more important and expected struc-
tural heterogeneity in the region of the four-nucleotide loop

Figure 2. A, 2D 1H NOESY spectra at 300-ms mixing time in 1H2O showing H6 to thymine methyl (top) and H5-H6 cytosine (middle) correlations from 2D 1H
TOCSY spectrum and H8/H6-H1� sequential walk assignments (bottom). B, H1/H8 correlations from 2D 1H NOESY spectrum at 300-ms mixing time. C, sequential
imino-H8 intertetrad NOE connectivities observed by NMR. D, schematic representation of the G-quartets of 22RT. Guanines are numbered based on position
in the 22RT sequence. All experiments were performed at 20 °C in a buffer containing 20 mM potassium phosphate, pH 6.5, supplemented with 70 mM KCl and
	2 mM DNA. Characteristic guanine imino-H8 NOE connectivities were observed for the following tetrads: G2�G6�G11�G18, G3�G7�G12�G19, and
G4�G9�G13�G20.

NMR structure of a G-quadruplex from the KRAS promoter region

J. Biol. Chem. (2017) 292(19) 8082–8091 8085

 at SW
A

R
T

H
M

O
R

E
 C

O
L

L
E

G
E

 on N
ovem

ber 10, 2017
http://w

w
w

.jbc.org/
D

ow
nloaded from

 

http://www.jbc.org/


with a significant degree of plasticity as indicated by the low
number of inter-residue NOEs from the loop nucleotides. The
four-base loop blocks the groove but creates an additional nar-
row backbone-backbone interface in the region where A17
links to G18 (Fig. 3, c and f, red colored surface, and supplemen-
tal Fig. S5). The conformation seems unique to this G4 fold and
could be an interesting site to target small ligands. In our view,
this medium-size loop presents in terms of drug design another
interesting feature, i.e. together with the G4 core surface it
makes a sort of tunnel or cavity with negative electrostatic
potential values significantly lower than those found on the rest
of the surface (blue). The cavity could be targeted by ligands
with non-bulky side arms usually hanging out from the aro-
matic core that conventionally targets the more exposed tetrad.
This cavity/tunnel is similar to the one found in the structure of
a G4 adopted by a G-rich region of c-kit2 (Protein Data Bank
code 2KQG) (67). As opposed to KRAS 22RT, c-kit2 G4 coex-
ists in two parallel-stranded propeller-type folds that are sim-
ilar but dynamically distinct substates.

Conclusion

In summary, G-quadruplex DNA structural motifs can
behave as transcription repressors (12, 68), and KRAS is an
important target against many forms of cancer that so far have
very poor responses to standard therapies (38). We have deter-
mined a 3D high-resolution NMR structure of a stable G-quad-
ruplex from a sequence located in the nuclease-hypersensitive
element of the promoter region of the KRAS proto-oncogene.

The structure may be one among others potentially available in
the promotor region and may offer new, interesting possibilities
for selective recognition by small ligands (69 –73). In that sense,
developing inhibitors of KRAS that target G-quadruplex motifs
may be an interesting alternative route in the fight against cer-
tain types of cancers, as important as others currently being
pursued against the intricate signaling network involved in
oncogenic KRAS activation (74). Current existing strategies
involve targeting post-translational modifications to prevent
membrane association (75), small GTPase-targeting peptides
(76), SOS-mediated nucleotide exchange (77), and inhibitors
that allosterically control GTP affinity (38).

Materials and methods

DNA oligonucleotides

The unlabeled DNA oligonucleotides used in this work were
purchased from both Eurogentec (Belgium) and Integrated
DNA Technologies. They were synthesized on a 200-nmol or
1-�mol scale and then purified by reverse-phase HPLC. The
sequences were supplied lyophilized. The 5% 15N,13C site-spe-
cifically labeled 22RT used in this study was synthesized in our
laboratory (INSERM U1212, Bordeaux, France) on an auto-
mated Expedite 8909 DNA synthesizer at a 1-�mol scale on a
1000-Å primer support (Link Technologies SynBase CPG). All
the standard phosphoramidites (dABz, dT, dGiBu, and dCAc),
reagents, and solvents used during the synthesis were pur-
chased from Glen Research. The dGiBu phosphoramidite

Figure 3. a, depiction of the ensemble of the six lowest-total-energy refined structures of 22RT. All guanines are in the anti conformation. K� counterions are
depicted in purple, and the yellow line represents the principal axis of the six averaged all-atom mass-weighting principal inertial axes. On average, each
conformer structure principal axis spans nearly 26 � 44 Å. The average groove width is 12 � 2 Å. In the depiction on the right, the 5�- and 3�-ends of the
oligonucleotide are at the top and bottom of the image, respectively. b, the average structure calculated from the six lowest-total-energy conformers. The
ribbon thickness is proportional to the all-atom r.m.s.d. numerically represented by the color (see key for code in Å). A1 and T8 in red have the largest r.m.s.d.
values (�3.5 Å) of all residues. c, electrostatic surface of 22RT calculated using the Adaptive Poisson-Boltzmann Solver (APBS). The map was calculated using
multiple Debye-Hückel boundary conditions and a nonlinear Poisson-Boltzmann equation with 40 points as the surface density at 293 K. The scale is reported
in dimensionless units. The electronegative tunnel/cavity (red) represents a unique feature not usually found in canonical nucleic acid structures. In the bottom
panels (d–f), the structure has been rotated (90°) so that the view is down onto the G-quartet plane that contains the 5�-most G.
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(U-13C10, 98%; U-15N5, 98%; CP, 95%) was purchased from
Cambridge Isotope Laboratories. After the synthesis, the oligo-
nucleotides were cleaved from the support, and the nucleobases
were deprotected with ammonium hydroxide at 55 °C for 16 h
and then lyophilized. All the sequences used for NMR were
prepared in potassium NMR buffer (20 mM K2HPO4/KH2PO4,
70 mM KCl, pH 6.5, 10% D2O). For CD and UV-visible studies,
samples were prepared in KPi buffer (20 mM K2HPO4/KH2PO4,
70 mM KCl, pH 6.5). After dissolving in buffers, the oligonucle-
otides were heated for 5 min at 95 °C and chilled on ice several
times. After the last annealing cycle, they were refrigerated for
24 h before use. Supplemental Table S2 lists some characteris-
tics of the sequences used in this work.

CD spectroscopy

CD experiments were performed on a Jasco J-815 spectrom-
eter using Spectra Manager software. Each DNA sample was
prepared at 3–5 �M in KPi buffer and annealed at 90 °C for 5
min, cooled slowly by turning off the heating block (about 3–5
h), and then incubated overnight at 4 °C. The CD spectra were
measured in the region between 220 and 330 nm using a scan
speed of 50 –100 nm/min and a response time of 1 s. Three
scans were collected and averaged. Data were processed as
described elsewhere (78). CD melting studies were performed
on �3 �M DNA samples using either a full-wavelength or a
single-wavelength mode. In the former case, the data were col-
lected in the wavelength range 330 –220 nm with 0.5-s averag-
ing time, 2-nm bandwidth, 100-nm/min scan speed, two accu-
mulations, and 0.2-nm step. The temperature was raised from 4
to 90 °C with 1 °C intervals and a 0.4 °C/min rate. These param-
eters lead to the overall acquisition time of 1 h/10 °C tempera-
ture change. All data collected in this manner were examined
for the presence of possible intermediates during the melting
process. However, the overall shape of the CD signature
remained unchanged for every sample examined. Thus, after
completion of the full-wavelength scan for each sample, addi-
tional melting data were collected, monitoring at 264 (charac-
teristic for a parallel G4) and 330 nm (used as a reference to
factor out instrument fluctuations) with an averaging time of
32 s and a bandwidth of 2 nm. The temperature was raised from
4 to 95 °C and then cooled to 4 °C at a rate of 1 °C/min. This set
of experiments allowed us to test the reversibility of the melting
process and to obtained thermodynamic parameters. Melting
data were processed as described in a previous report (78).

NMR spectroscopy

NMR spectra were recorded on Bruker Avance 700- and 800-
MHz instruments equipped with cryogenically cooled probes.
Experiments were performed at 20 °C. For solution NMR, stan-
dard 3- or 5-mm NMR tubes were used. The samples were
preparedinpotassiumNMRbuffer.Theconcentrationsofoligo-
nucleotide were between 1 and 5 mM depending on the exper-
iment requirements. Most of the 1H 1D spectra were recorded
using the 1-1 echo pulse sequence (79) (based on the use of
“double pulsed field gradient spin-echo”), which selectively
removes resonance due to water without affecting other res-
onances, including those that are in fast exchange with
water. The gradient pulse was a smoothed square shape

(SMSQ10).100. Resonance assignments were made using 5%
15N,13C site-specific low-enrichment labeling for imino pro-
tons and 1H-13C HSQC for aromatic H8 protons. To correlate
imino and H8 protons of the same guanine via the 13C5 carbon
at natural abundance through-bond correlations, the 1H-13C
HMBC experiment were performed at natural abundance. Thy-
mines were unambiguously identified using the following
mutants: 22RT T8 to C8 and 22RT T10 to C10 (supplemental
Table S2). The remaining resonances were identified using
TOCSY and COSY experiments and were independently veri-
fied using NOESY experiments.

DOSY experiment

A reference 1D 1H spectrum was recorded before the DOSY
experiment. The pulse program stebpgp1s191d was used for
the 1D DOSY spectra, and stebpgp1sp9pr was used for the 2D
DOSY spectra. The sequences used simulated echo with a bipo-
lar gradient pulse pair and one spoiled gradient, and 3-9-19
WATERGATE (80) solvent suppression was also applied. Sixty-
four scans were recorded for the 1D DOSY experiment, and
1024 were recorded for 2D DOSY. A relaxation delay of 2 ms
was applied, and a 20-�s delay was used for water suppression.
The time domain was fixed to 8000 points for the F2 dimension
and 32 points for the F1 dimension. The diffusion time (�) was
150 ms, the gradient length (�) was 1 ms, and the recovery delay
after gradient was fixed to 200 �s. The gradient strengths
applied were set between 5 and 95%, and the gradient strength
change was set to linear. The data processing was performed
using Bruker-designed DOSY software. The following equation
was applied to fit the curve of diffusion,

I � I0e � D�2g2�2�� � �/3 � � / 2� (Eq. 1)

where I is the observed intensity, I0 is the reference intensity
(unattenuated signal intensity), D is the diffusion coefficient, �
is the gyromagnetic ratio of the observed proton, g is the gradi-
ent strength, � is the length of the gradient, and � is the diffusion
time. The diffusion coefficient D for a given molecule is
described by the Stokes-Einstein equation,

D �
kT

6�	RS (Eq. 2)

where k is the Boltzmann constant, T is the temperature, 	 is
the viscosity of the liquid, and RS is the (hydrodynamic) radius
of the molecule.

UV-visible spectroscopy

Thermal difference spectra—Thermal difference spectra
were obtained in KPi buffer by collecting UV-visible wavelength
scans from 220 to 350 nm at two temperatures, one well below
(usually 4 °C) and another well above (usually 95 °C) the melt-
ing temperature of the DNA secondary structure. The differ-
ence spectra were obtained by subtracting the data at 4 °C from
the data at 95 °C. Both 21R and 22RT showed thermal differ-
ence spectral signatures characteristic of G4 structures (81).

UV-visible melting of 21R and 22RT—Concentration depen-
dences of the melting transitions of 21R (5�-AGGGCGGT-
GTGGGAAGAGGGA-3�) and 22RT (5�-AGGGCGGT-
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GTGGGAATAGGGAA-3�) were determined in UV-visible
melting experiments by monitoring the signals at 295 and 335
nm using an Uvikon XL spectrophotometer. The former wave-
length is sensitive to the G4 folding state, and the latter wave-
length was used as a reference to monitor instrument perfor-
mance. The extinction coefficient of the DNA at 335 nm is
negligible. Five separate samples with concentration ranging
from 5.0 to 50 �M were annealed in KPi buffer as described
above and equilibrated at 4 °C overnight. Samples were placed
in cuvettes with 1.0- or 0.2-cm path lengths depending on
strand concentration. The temperature was measured with the
temperature sensor inserted in the cuvette holder next to the
DNA sample. The temperature was changed at a rate of 0.2 °C/
min, and the averaging time was 0.3– 0.5 s. Each experiment
included two temperature ramps from 95 to 0.5 °C with a
15-min hold and from 0.5 back to 95 °C. The experiments were
repeated twice. The value of signal at 335 nm was subtracted
from each data set. The data suggest that the folding/unfolding
of both 21R and 22RT is reversible as the melting and cooling
data are nearly superimposable, consistent with our CD melting
study. The melting curves were analyzed assuming a two-state
model with temperature-independent enthalpy, �H0 (82).
Starting and final baselines were assumed to be linear, and
melting temperature and enthalpy of unfolding were adjusted
to get the best fit. Data were also analyzed assuming non-zero
heat capacity. This analysis included an additional parameter
but did not lead to significant improvement of the fit. Melting
temperatures and �H0 obtained from CD and UV-visible data
are in good agreement with each other.

NMR structural calculations based on NOE distance restraints
and simulated annealing

NOE-derived distance restraints were calculated from spec-
tral densities obtained from different 1H-1H NOESY spectra at
various mixing times (50, 200, 300, and 400 ms). In the final
structure calculations, only data from the 300-ms mixing time
was used. All NMR restraints were obtained from spectra col-
lected at 293 K unless otherwise stated. The peak volumes were
classified as weak (4.0 – 6.5 Å), medium (2.5– 4.5 Å), and strong
(1.8 –3 Å). Planarity restraints (20 kcal/mol/Å2) were intro-
duced for the following tetrad architecture: G2�G6�G11�G18,
G3�G7�G12�G19, and G4�G9�G13�G20. Hydrogen-bond and
planarity restraints were defined between 1.9 and 2.1 Å and
between 2.9 and 3.1 Å for the bonds established between H1
and O6 and between H21 and N7, respectively, and were only
applied to the guanine bases involved in tetrad formation. The
anti conformation was defined by the glycosidic torsion angles
(
) determined from the H1�-H8 intrabase distances. They
were restrained to be in the range of �130 � 40°. Altogether,
the hydrogen bonds and the artificial planarity restraints kept
the G-quartets in their quasiplanar conformation during the
first steps of the ARIA-CNS calculations; these restraints were
removed during the refinement process. The integration of
NOE volumes, calibration of distances with a relaxation matrix
spin diffusion correction, and setting of lower and upper
bounds were done by ARIA2.3/CNS1.2. Two distinct steps
were used to calculate the final assembly of 20 structures. First,
eight iterations of calculations were carried out using 200 struc-

tures per iteration in ARIA2.3/CNS1.2 (83, 84) with mixed Car-
tesian and torsion angle dynamics during the simulated anneal-
ing runs. The protocol contains four stages: (a) an initial high-
temperature torsion angle simulated annealing of 50,000 steps
at 10,000 K with 27 fs for each step, (b) a torsion angle dynamic
cooling stage of 10,000 steps from 10,000 to 2000 K, (c) a Car-
tesian dynamics cooling stage of 10,000 steps from 2000 to 1000
K, and finally (d) a Cartesian dynamics cooling stage of 20,000
steps from 1000 to 50 K with 3 fs per step. For all bonds, angles,
and improper dihedral energy terms of the force field, the stan-
dard CNS dna-rna-allatom topology and parameter files were
used with uniform energy constants. For distances and hydro-
gen bonds, 10 kcal mol�1Å�2 was applied during the initial
stage of dynamics and was increased up to 50 kcal mol�1Å�2

for the remaining steps of the dynamics. For dihedral restraints,
energy constants applied were 5, 25, 200, and 200 kcal
mol�1Å�2 for the phases a, b, c, and d, respectively. An energy
constant of 25 kcal mol�1Å�2 was applied for planarity
restraints. Distance restraints together with G-tetrad hydro-
gen-bonding distance restraints, glycosidic angle restraints,
and planarity restraints were used during this calculation step.
In the second step, we performed the necessary refinement of
the t20 best structures in explicit water molecules as solvent.
For that purpose, the SANDER module of Amber 12 (Univer-
sity of California, San Francisco) was used. The calculation was
performed with the AMBER force field FF12SB, which contains
the AMBER force field for nucleic acids and Barcelona changes
(85). Two K� ions were included between the G-tetrads, and 21
additional K� ions were included to counter the negative
charge of the DNA. The 20 structures were solvated by a trun-
cated octahedral box of TIP3P water molecules (86). The
structures were energy-minimized using harmonic position
restraints of 25 kcal/mol/Å2. First, 1000 steps of minimization
were carried out holding the system fixed and minimizing just
the water box, including ions with 500 steps of steepest descent
minimization followed by 500 steps of conjugate gradient min-
imization. Then, 2500 steps of minimization were performed
for the entire system with 1000 steps of steepest descent mini-
mization followed by 1500 steps of conjugate gradient minimi-
zation. Afterward, 20 ps of simulated annealing was acquired
with heating from 0 to 300 K during 5 ps under a constant
volume while maintaining the position restraints at 25 kcal/
mol/Å2. Finally, we performed a cooling step to 100 K during
13 s; during this step, the time constant for heat bath coupling
was varied in the range of 0.05– 0.5 ps. A final cooling stage was
also performed with more rapid cooling (0.1– 0.05 ps) to bring
the system to 0 K. The weight of distance restraints was
increased gradually during this simulated annealing from 0.1 to
1 in the first 3 seconds and was then kept at 1 for the rest of the
annealing procedure.

NMR assignments

Using site-specific low (5%)-enrichment [13C,15N]guanine-
labeled samples, the imino H1 and the aromatic H8 protons for
each guanine were unambiguously assigned (supplemental Fig.
S1A). The guanine H8 aromatic protons were assigned using
classical 13C-1H HSQC spectral analysis for each guanine sep-
arately (supplemental Fig. S1B). The assignments were also
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confirmed by natural abundance through-bond correlations
using a jump and return (JR) HMBC experiment, which corre-
lates guanine imino protons with H8 aromatic protons through
13C5 (supplemental Fig. S1C). The complete spectral assign-
ment was achieved by combining through-bond (TOCSY and
COSY) and through-space (NOESY) experiments. An 1H-1H
TOCSY experiment allowed unambiguous correlation of
H5-H6 protons of the cytosine at position 5 and the H6 methyl
protons of thymines at positions 8, 10, and 17 (Fig. 2A). The
remaining proton assignments such as those of sugar protons
(H3�, H4�, H2�/H2
, and H5�/H5
) were determined as
described previously (5, 6).

Restraints used in structure calculations

NMR restraints used for the calculations are listed in supple-
mental Table S1.

Data deposition

Water-refined structures of KRAS 22RT G-quadruplex were
deposited in the Protein Data Bank under Protein Data Bank
code 5I2V.
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46. Cogoi, S., Zorzet, S., Rapozzi, V., Géci, I., Pedersen, E. B., and Xodo, L. E.
(2013) MAZ-binding G4-decoy with locked nucleic acid and twisted
intercalating nucleic acid modifications suppresses KRAS in pancre-
atic cancer cells and delays tumor growth in mice. Nucleic Acids Res.
41, 4049 – 4064

47. Cogoi, S., Paramasivam, M., Filichev, V., Géci, I., Pedersen, E. B., and
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48. Podbevšek, P., and Plavec, J. (2016) KRAS promoter oligonucleotide with
decoy activity dimerizes into a unique topology consisting of two G-quad-
ruplex units. Nucleic Acids Res. 44, 917–925

49. Xodo, L., Paramasivam, M., Membrino, A., and Cogoi, S. (2008) Protein
hnRNPA1 binds to a critical G-rich element of KRAS and unwinds G-
quadruplex structures: implications in transcription. Nucleic Acids Symp.
Ser. 52, 159 –160

50. Paramasivam, M., Cogoi, S., and Xodo, L. E. (2011) Primer extension
reactions as a tool to uncover folding motifs within complex G-rich
sequences: analysis of the human KRAS NHE. Chem. Commun. 47,
4965– 4967

51. Kerkour, A., Mergny, J. L., and Salgado, G. F. (2016) NMR based model of
human telomeric repeat G-quadruplex in complex with 2,4,6-triarylpyri-
dine family ligand. Biochim. Biophys. Acta 10.1016/j.bbagen.2016.12.016

52. Groves, P., and Webba da Silva, M. (2010) Rapid stoichiometric analysis of
G-quadruplexes in solution. Chemistry 16, 6451– 6453

53. Chambers, V. S., Marsico, G., Boutell, J. M., Di Antonio, M., Smith,
G. P., and Balasubramanian, S. (2015) High-throughput sequencing of
DNA G-quadruplex structures in the human genome. Nat. Biotechnol.
33, 877– 881

54. Bedrat, A., Lacroix, L., and Mergny, J. L. (2016) Re-evaluation of G-quad-
ruplex propensity with G4Hunter. Nucleic Acids Res. 44, 1746 –1759

55. Merle, P., Gueugneau, M., Teulade-Fichou, M. P., Müller-Barthélémy, M.,
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