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the Thermodynamic Properties of Fluid Systems : 

Gases, Non-electrolyte Solutions, Weak and Strong 
Electrolyte Solutions 

BY ROBERT H. WOOD* 

Department of Chemistry, University of Delaware, Newark, DE 1971 1, U.S.A. 

TERENCE H. LILLEY 

Department of Chemistry, The University, Sheffield S3 7HF 

AND 

AND 

PETER T. THOMPSON 

Department of Chemistry, Swarthmore College, Swarthmore, PA 1908 1, U S A .  
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For dilute gases and non-electrolyte solutions in the McMillan-Mayer standard state, an activity 
expansion due to Mayer has great advantages over the n o d  concentration expansion (virial 
equation) for strongly associating species. For weakly interacting systems, both approaches are 
suitabIe. The activity expansion eliminates the need to differentiate between strong " chemical " 
interactions and weak " physical " interactions since the same equation is used in each situation. 

The equation has been modified to represent electrolyte solutions in the McMillan-Mayer standard 
state by requiring that it be consistent with the Debye-Huckel and higher order limiting laws for 
strong electrolytes and that it be equivalent to a chemical association model for weak electrolytes. 
The result is a compact equation which contains no arbitrary ion-size parameters and which does 
not require the classification of an electrolyte as strong or weak. For 2:2 electrolytes, the equation 
gives a very good fit to the anomalous low concentration region. 

For practicd thermodynamic calculations, similar equations for molal activity coefficients are 
proposed ; good fits of the data are obtained. 

1. INTRODUCTION 

An exact treatment of the interactions present in simple and complex fluid mixtures 
is required. In such systems, chemical equilibrium approaches are used when the 
interactions between species are strong, whereas " physical " non-ideality corrections 
are applied for weak interacti0ns.l Deciding which approach to use in a given 
situation is arbitrary. In equilibrium treatments for mixtures of electrolytes, this 
problem is particularly severe, and many predictions of the properties of these 
mixtures either treat the chemical equilibrium correctly, but approximate the non- 
ideality corrections or do the reverse by considering only strong electrolyte mixtures.3 
Because of these problems, it would be desirable to find an approach which treats 
both weakly and strongly interacting species without any formal changes in the 
equations. In this paper the utility of an approach involving an activity expansion 
rather than the more customary density (concentration) expansion is investigated €or 
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1302 ACTIVITY EXPANSIONS 

dilute gases and non-electrolyte solutions. The method is then modified for electrolyte 
solutions in such a way that it treats the limiting behaviour of both strong and weak 
electrolytes correctly. The usefulness of this formalism in representing the properties 
of electrolytes is then demonstrated. For strongly associating species, the activity 
expansion is much more rapidly convergent than the concentration expansion, in the 
sense that a smaller number of terms represents the data to higher concentrations. 
For weakly interacting species, neither expansion has any definite advantage. 

Probably the most useful method of calculating the properties of electrolytes froin 
the potential of average force involves the hypernetted chain e q ~ a t i o n . ~  The 
calculations with this equation are at present too laborious for most practical purposes, 
particularly when mixtures of electrolytes are considered ; furthermore, semi- 
empirical potential functions are required. The present equations give compact 
and accurate expressions for representing the properties of complex mixtures but do 
not give detailed information about the potential of average force. 

2. DILUTE GASES AND NON-ELECTROLYTE SOLUTIONS 

The derivation of the concentration (number density) expansion for the thermo- 
dynamic properties of real gases starts with the Grand Canonical Ensemble, and has 
been outlined for the simple case of a one component imperfect gas by Hill.J In this 
instance, the method is relatively simple and is worth reiterating at this point since 
to do so will clarify what comes later. 

The Grand Canonical Partition Function (GCPF) can be written in terms of the 
Canonical Partition Function (CPF) and the absolute activity (A) as 

GCPF = l +  (CPF),IN (1) 
N > O  

with N = the number of molecules in the system and Iz = exp (p/kT). Eqn (1) is a 
power series in the absolute activity (A) and may be transformed into a power series 
in the activity (2) to give 

where (CI), is the configurational integral for N molecules and z = (CI),A/V. We 
also have 

consequently combining eqn (2) and (3) gives an expression for the pressure of a 
gas in terms of an activity expansion. 

GCPF = exp (pV/kT) ; 

p/kT = z+ C b,zn. 

(3) 

(4) 
n > l  

The coefficients b, in this equation are well defined cluster integrals which may in 
principle be calculated exactly whenever the force law between particles is known. 

Using the thermodynamic relation 
a( Plk T )  

= (-K)T 
where p is the particle number density, we find 

p = z +  nb,zn. 
n> 1 

Since z is generally not known from experiments, the usual procedure at this point 
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R .  H .  WOOD, T .  H .  LILLEY AND P .  T .  THOMPSON 1303 

is to express this activity expansion as a concentration expansion by a series reversion 
using eqn (4) and (5). The new expression obtained is 

where the B, are the virial coefficients. Virial expansions like eqn (6) or modifications 
of it are widely used to represent thermodynamic data. The object of the present 
work is to indicate that the step from eqn (4) and (5 )  (the activity expansion) to eqn (6) 
(the concentration expansion) is not necessary and that eqn (4) and (5) have several 
advantages. 

The general approach which has been used will first be outlined for gases and 
solutions containing non-electrolytes and examples of the utility of the approach 
will be given. The examples we have chosen are such that they illustrate particular 
points, but we have not intended that they should be comprehensive. We can treat 
both gases and non-ionic solutions using the same formalism since McMillan and 
Mayer have shown that the same expressions apply to both if, for the pressure of a 
gas, we substitute the osmotic pressure of the solution and if the solvent-averaged 
potential between isolated solute molecules is substituted for the direct potential. 
For a system containing the set It of molecular components, the pressure may be 
written as ' 9  * 

p / k T  = C zi+ C b,P. (7) 
1 n> 1 

Before explaining the nomenclature in this equation, it will be converted to molar 
units by defining 

K ,  = bnNn-' 

and a new activity, a = z / N  where N is Avogadro's constant. Thus, 
plRT = ai+ C &a". 

i n > l  

The sum over i is taken over all components and the sum over It is taken over all 
possible clusters of two or more molecules. A general cluster consists of n1 molecules 
of component 1, n2 molecules of component 2, etc. The symbol an is defined as 
q1Gq3. . .. For example, in a two component system the clusters of 2 molecules 
would contribute Klla$ + K12a,a2 + K22a2 to the sum. When the system is ideal, 
then K, = 0 for n > 1 and 

pid/RT = C ci (9) 
L 

where cf is the molar stoichiometric concentration of the ith species. If we now 
define the activity coefficient of a component i by 

then 
Y i  = ailci (10) 

p / R T  = C ciyi+ C Knc"yn. 
i n> 1 

The first term on the right side of eqn (11) represents the contribution of 
the " free " components while the second term refers to the effect of '' dimers ", 
" trimers ", etc., formed by molecular interaction. Similarly, for a multicomponent 
system, eqn (5 )  becomes 

ci = ai+kZ niKnan (12) 
n> 1 
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1304 ACTIVITY EXPANSIONS 

where now ni denotes the number of i molecules present in the various clusters formed 
from the set It. Thus, the activity coefficient of species i is from eqn (10) and (12) 

y i  = 1 -( niKnan)lci. 
n > l  

If we now combine eqn (9) and (ll), we get 

with y1 given by eqn (13). Eqn (14) is an expression for the compressibility coefficient 
in a gaseous system or the McMillan-Mayer osmotic coefficient of a non-electrolyte 
solution. 

From eqn (1 l), it is readily shown by standard thermodynamic manipulations 
that the expression for the excess Helmholtz free energy (Aex) is 

A""/( V R T )  = c ci In y i  + c ci( 1 - yi) - Knan. (15) 
i I n > l  

Other thermodynamic quantities are obtainable from this, e.g., the excess internal 
energy, Uex, 

The expressions obtained are complicated but take fairly simple forms if systems 
containing only one component (or one solute) are considered. Under this condition 
we obtain as the one component examples of eqn (8) and (12)-(14), respectively, 

plRT = a +  c Knan 
n> 1 

= a + K 2 a 2 + K 3 a 3 +  . . . 
c = a +  c nKnan 

n> 1 

= a$2K2a2+3K3a3+ . . . (12') 
y = 1-( nKnan)/c 

n >  1 

= 1 -2K,cy2 -3K3c2y3 . . . (13') 

= y+K2cy2+K3c2y3f  . . . (14') 
It is worthwhile at this point to compare the above expressions with those obtained 
using a concentration expansion. In particular, the analogues of eqn (8') and (14') 
are : 

p/RT = C+ C Bnc" 
n >  1 

= c+B2c2+B3c3+.  . . 
4 = 1 + Bncn-' 

n >  1 

= 1+B2c+B3c2+ . . . (1 8) 
It should be noted that precise expressions linking any of the I?,, coefficients to the 
Kn coefficients can be obtained. This will be referred to later. 

So far we have equations for representing the properties of mixtures but no 
interpretation of the meaning of the various terms. Mayer (Section 4.5) has given 
such an interpretation by showing that the excess of associated pairs over those that 
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R. H. WOOD, T. H .  LILLEY AND P .  T .  THOMPSON 1305 

would be expected for a random distribution is given by N2 = VNK, u2. In general 
for any cluster of n molecules, the excess of associated n-mers over that expected for 
a random distribution is given by N,, = VNK,, an. Thus, eqn (8') becomes 

in which N,/V is the excess concentration for a cluster of n molecules. Eqn (19) 
states that both the ideal gas law and the Van't Hoff law are always obeyed provided 
excess concentrations are used. Guggenheim has pointed out the usefulness of this 
equation and proposed the name " degree of sociation " for the excess association 
@ositive or negative) above that which would be found in a random m i ~ t u r e . ~  
Similarly, he names the cluster integrals, b,, the sociation constants. We shall follow 
Guggenheim in referring to b, or K, as sociation constants. As Guggenheim points 
out, these constants have the advantage that they are always well defined even when 
there is no strong association. In the limit of strong association, the normal 
association constant and the sociation constant are identical for all practical purposes 
while, for weakly interacting species, the association constant cannot be defined 
uniquely, whereas the sociation constant is always well defined. The fact that the 
sociation constant sometimes is negative has a simple physical interpretation ; it just 
means that the excess (above random) concentration is negative. Whenever the 
action of the repulsive potential between molecules at very close distances produces 
a smaller concentration than would be expected from the bulk value, then the excess 
concentration in this region is negative. Unless this region is overwhelmed by the 
excess positive concentration at larger distances resulting from the positive part of 
the potential, the net excess concentration will be negative. As Guggenheim points 
out,9 the formula for a pair association ccnstant, K,, is 

K ,  = - j: (exp (- w/kT))4xr2  dr 

whereas the sociation constant, K,, is 

(exp (- w/kT) -  1>4nr2 dr. ( 19") 

In the case of strong association, the arbitrary upper limit to the integration in eqn 
(19') is not important as long as a reasonable value is used. However, for weak 
association, the association constant can be arbitrarily set by the choice of the 
integration limit. In the case of eqn (19"), however, as the integral converges if w(r) 
is not too long range, the sociation constant, K,, is well defined and retains its 
rigorous interpretation as a measure of excess pair concentration. 

The decision as to when to call a given configuration associated or not is quite 
arbitrary. Hill lo has shown that any arbitrary classification can be used and, 
provided that the statistical mechanics is done correctly, the overall thermodynamic 
properties of the mixtures are independent of the arbitrary separation. Hill has also 
shown that Mayer's definition of a cluster is just the definition that is necessary so 
that the clusters behave as if they were ideal; that is, this is the only definition for 
which the pressure of a non-ideal gas can be calculated from the sum of the concen- 
trations of sociated species [eqn (1911. 

The application of the above approach to single component gases and solutions 
is straightforward. Given a set of sociation constants, K,, and a concentration, c, 
eqn (13') is solved for the activity coefficients by standard non-linear techniques. 
Then the pressure is calculated from eqn (14). The approach has, in the present 
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1306 ACTIVITY E X P A N S I O N S  

examples, been limited to situations where only the first two sociation constants are 
required adequately to describe a given set of experimental data, and this has 
introduced a subjective element insofar as the choice of concentration ranges is 
concerned. The inclusion of higher terms is relatively easy, but is not necessary for 
the present purposes. Thus, we have terminated data sets when the inclusion of 
measurements at higher concentrations significantly perturbed the reliability of the 
coefficients obtained from the least squares fitting procedure when only two sociation 
constants were used. 

To obtain a better visual comparison of the relative efficacies of the activity and 
concentration expansions, it is useful to recast eqn (14') and (18) into the forms 

and 

where we have truncated the activity expansion but not the concentration expansion. 

I I i 
0 1 2 

(c or u)/mol dm-3 
FIG. 1.-Plot of eqn (20) and (21) for argon at 700K. The intercept is K2 = -B2 = -1.588 
( f 0,002) x and corresponds to a negative sociation constant at this high temperature. K3 = 
1.346( & 0.060) x lo-$. Experimental points are shown as closed (activity) and open (molarity) 

circles. 

We first consider the properties of argon gas at two temperatures, 700 and 200 K. 
The data l1 were analysed using eqn (14') and (18) and these results, plotted in the 
forms of eqn (20) and (21), are given in fig. 1 and 2. The intercepts in these figures 
are K2 (or -B2), and the slopes of the lines are K3 (or -B3).  If higher terms are 
needed, the lines will not be straight at high concentrations. Also, since K2 = -Bz, 
the intercepts of the two plots must be identical. As can be seen from the figures, 
both the activity and concentration expansions adequately represent the data, although 
at 700K the need for a triplet term is less pronounced in the activity expansion. 
This is as it should be since, for argon above its critical point, we would not expect 
long-lived dimers (or higher aggregates) to be of importance. Thus, each expansion 
works about equally well. At the higher temperature, the sociation constants are 
negative, corresponding to a net repulsive interaction between atoms, whereas, at the 
lower temperature, the converse applies. 
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R. H .  WOOD, T. H .  LILLEY AND P .  T.  THOMPSON 1307 

A similar analysis of the compressibility data l2  of methane at 350°C is illustrated 
in fig. 3. Here again, the triplet term is smaller for the activity expansion and the 
requirement that both expressions have the same intercept suggests that terms higher 
than triplets are needed for the concentration expansion. However, the results do 
not suggest the formation of strong molecular clusters, which is consistent with our 
chemical knowledge of methane at temperatures above the critical point. 

"E 
-0 
r( 

I I I I I I 

I 
H W - 0.045 

0 0.1 0 . 2  0 . 3  0.4 0.5 0 .6  0.7 

(a or c)/mol dm-3 
FIG. 2.-Plot of eqn (20) and (21) for argon at 200K. The intercept is Kz = -Bz =:4.806 
( f 0.012) x and corresponds to a positive sociation constant at this low temperature. K3 = 
4.53( k 0.1 1) x Experimental points are shown as closed (activity) and open (molarity) circles. 

We now turn to a rather more extreme example in the gas phase; namely, the 
interaction of nitrogen dioxide molecules. Unlike the earlier examples, the inter- 
action between NO2 molecules is sufficiently intense, at low temperatures at least, 
that long-lived species (N204) exist; indeed it has been customary to adopt a 
" chemical " approach to this system and treat the data l3 obtained by an equilibrium 
constant treatment. The result was K = 79.4 dm3 mol-1 at 35"C.13 That such an 

I 1 I 

r I I I 

0 2 3 4 I 

(a or c)/mol dm-3 
FIG. -3.Plot of eqn (20) and (21) for methane at 350°C. The intercept is K2 = -& = -1.004 
(5 0.028) x and corresponds to a negative sociation constant. K3 = - 3.14( 0.45) x 

Experimental points are shown as closed (activity) and open (molarity) circles. 

J-42  
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1308 ACTIVITY EXPANSIONS 

approach is included in the present treatment is apparent from fig. 4. Note that in 
this figure both sets of data must extrapolate to the same intercept (K2 = --B2 x 
79.4). Two activity scale sociation constants are probably required to represent 
the experimental data, although a quite respectable fit was found using only the 
pair-wise interaction constant. 

O l  I I I I I I 

0 O S i  0.02 0.03 0.04 0.05 0.06 0.07 

c or alrnol dm-3 
FIG. 4.-Dlot of eqn (20) and (21) for NO2 at 35°C. Experimental points are shown as closed 
(activity) and open (molarity) circles. Both solid lines are calculated using K2 = 78.06( & 5.78) and 
K3 = 190(f 132) from an activity expansion [eqn (12)-(14)]. The dashed line represents eqn (21), 
using Bz and B3 only obtained from eqn (21) and the K2 and K3 values above. Note the excellent 

fit of the molarity data using just two constants (K2 and K3) in an activity expansion. 

This is in contradistinction to the concentration virial expansion which obviously 
requires many terms to obtain an adequate fit. As mentioned earlier, the socia- 
tion constants and concentration virial coefficients can be related by a series 
reversion '9 lo and, if only the first two sociation constants are used, the expressions 
for the first few virial coefficients are : 

Bz = -K2 

B3 = 4K$-2K3 
B4 = -2OK2+18K,K, 
B5 = 112K2- 144K2KS + 18KZ 

B6 = -672K~+952K23K,-315K,K~. (21') 
The last three members of this set are incomplete when the K, for n > 3 are no 
longer negligible. The results should be accurate in the present instance, however, 
because of the reasonable assumption that K4 to K6 = 0 for NO2. Although the 
terms B2 to B6 would presumably give a reasonable approximation at the 
lowest concentrations if the data existed, at the actual experimental concentrations 
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R. H .  WOOD, T .  H. LILLEY AND P. T. THOMPSON 1309 

they are quite insufficient to represent the data. This arises because, when K2 and K3 
are relatively large, the B terms become very large and adjacent members of the series 
have alternating signs. In the present case, B2 to B6 are -78.06, 2.40 x lo4, 
-9.25 x lo6, 4.12 x lo9 and -2.12 x 10l2, respectively. It would seem that literally 
hundreds of terms might be required to represent the actual experimental concentration 
data adequately. However, if eqn (1 2)-( 14) are rearranged to obtain (1 - 4 ) / c  and c, 
then just two activity expansion constants (K2 and K3) are sufficient to calculate a 
curve which gives an excellent fit to the molarity data (see fig. 4). It should be 
noted that the numerical value obtained for the pairwise sociation constant is 
essentially the same as that obtained from an association treatmenf.l3 This is as 
it should be for a strong localized pairwise interaction. 

Our principal reason for pursuing the present approach stems from our interest 
in aqueous solutions containing non-electrolytes and/or electrolytes. As a first step 
in this regard, we have considered the properties of aqueous urea solutions at 25"C, 
for which reliable and extensive thermodynamic data exist. 1 4 9  When solutions 
are considered, a consistent treatment requires that the osmotic coefficient and the 
concentrations are those pertaining to McMillan-Mayer (MM) conditions.6 To 
stress this we adopt and extend the terminology used by Friedman I6 to rewrite 
eqn (20) and (21) as 

(4MM-YMM)/(CMM YLM) = K2.MM+K3.MM aMM (22) 
(23) ( l - 4 M M ) I C M M  = - B P , M M - B 3 , M M  C M M - B 4 , M M  chi- * * 0 .  

The conversion l6  of the experimental osmotic coefficient data from the molal, one 
atmosphere [Lewis-Randall (LR)]16 scale to the MM scale was accomplished by the 
use of volumetric l5 and isothermal compressibility data.17 It is worth noting that 

TABLE 1 .-LEWIS-RANDALL (LR) AND MCMILLAN-MAYER (MM) OSMOTIC COEFFICIENTS AT 
25°C FOR UREA SOLUTIONS IN WATER 

1 0.9624 0.9558 1.0047 
2 0.9331 1.8349 1.0157 
4 0.8904 3.3951 1.0488 
6 0.8607 4.7357 1.0957 
8 0.8388 5.8979 1.1441 

10 0.8299 6.9148 1.1921 
a Smoothed data from ref. (15). b The molar concentration is at a pressure equal to the osmotic 

pressure of the solution. 

the differences in the osmotic coefficients on the two scales are by no means insignifi- 
cant. This is illustrated in table 1 in which observed LR and the correspondingly 
transformed MM values are given at the same round rn01alities.l~ A superficial 
consideration of these urea data, using a molality representation, would lead one 
to believe that fairly extensive association was occurring in the solution, whereas, 
if the MM data are considered, these indicate that a net repulsive interaction exists 
between urea molecules. This problem in the analysis of data has been discussed 
previous1y.l5* The idea that no net attractive interaction occurs between urea 
molecules in water is supported by spectroscopic evidence.lg In fig. 5 we illustrate 
the results for urea obtained by fitting the smoothed data tabulated by Stokes I5 to 
eqn (22) and (23). The line drawn for the concentration expansion is that calculated 
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1310 ACTIVITY EXPANSIONS 

from the sociation constant analysis [eqn (21’), together with K2 and K3] .  It is 
apparent, however, that the activity expansion gives a satisfactory representation of 
the experimental data with a smaller numerical value of the “ triplet ” term than that 
obtained from a concentration expansion, although the concentration expansion 
has a slightly longer linear range. 

0.05 I I , I 1 I I 

1 

MM 

0 3  - 
MM 

I I 1 t I 3 I 1 
0 2  4 6 8 1 0 1 2 1 4  

(c or u)/mol dm-3 or (rn or a)/mol kg-I 

FIG. %-Lower lines are a plot of eqn (22) and (23) for aqueous urea in the McMillan-Mayer standard 
state. The concentration expansion in this case is more rapidly convergent. Upper figures are a 
plot of eqn (32) and (33) for aqueous urea in the Lewis and Randall standard state (P = 1 atm) 
against molality. In this case, the activity expansion is much more rapidly convergent. Experi- 

mental points are shown as closed (activity) and open (molarity) circles. 

The above examples show that the activity expansion is as rapidly convergent 
as the concentration expansion in most cases, and that for strongly associating 
species it is very much more rapidly convergent.* The reasons for this convergence 
can be explained from a variety of viewpoints, some of which we discuss below. 

In the case of a species which associates very strongly to form dimers with negligible 
higher terms, the reason for the increased convergence of the activity expansion is 
evident by comparing the first terms in the two expansions. In the density expansion 
[eqn (17)], the concentration of dimer is approximated by the “ equilibrium constant ”, 
B2, times the concentration of the monomer squared. This is correct only in dilute 
solutions when the concentration of the monomer is approximately equal to its 
activity. In the corresponding activity expansion [eqn (1 l)], the concentration of 
dimer is calculated as the equilibrium constant, K2, times the activity of monomer 
squared. This is correct at all concentrations. As an extreme example of this kind 
of behaviour, consider a system of I2 vapour viewed as being composed of I atoms 
with strong pairwise association. It would be difficult to find a convergent density 
expansion, but the activity expansion would only need one term, the pairwise 

* It is more rapidly convergent in the sense that fewer terms are needed in the series and that it 
represents data over a wider concentration range. 

Pu
bl

is
he

d 
on

 0
1 

Ja
nu

ar
y 

19
78

. D
ow

nl
oa

de
d 

by
 S

w
ar

th
m

or
e 

C
ol

le
ge

 o
n 

08
/0

4/
20

16
 1

6:
10

:3
5.

 
View Article Online

http://dx.doi.org/10.1039/f19787401301


R. H .  WOOD, T. H. LILLEY AND P. T. THOMPSON 1311 

association term, to represent the system up to moderate pressures. Another way 
of saying the same thing is to note that the pairwise association constant, K,, appears 
in all of the higher virial coefficients of the concentration expansion [see eqn (21‘)l. 
Thus, if K2 is very large and all of the other K values are small, then the activity 
expansion converges very rapidly, whereas the density expansion converges very 
slowly. This is just the situation with I, considered as a monoatomic gas. Of 
course, in this extreme example a “chemist ” would know that gaseous iodine is 
diatomic and hence know not to choose I atoms as the primary component of the 
system. But the use of this type of privileged knowledge is precisely what we are 
attempting to avoid in the present approach. 

Looking at the convergence properties from the statistical mechanical point of 
view, the difference between the activity expansion and the density expansion is that 
they each represent different resummations of the graphs of the grand canonical 
ensemble expression. lo The activity expansion is much more rapidly convergent in 
the case of monoatomic iodine because the two iodine atoms tend to form one and 
only one strong bond. That is, when two iodine atoms approach, they form a 
chemical bond and another iodine atom approaching the resulting I, molecule cannot 
bond to this molecule. This is an extreme case of a non-pairwise additive potential. 
Thus, the dimerization of iodine atoms is very strong compared to the formation of 
higher aggregates and, in this case, the resummation implied by the activity expansion 
is much more rapidly convergent that the density expansion. 

Recently, Anderson 2o in an investigation of the topological properties of cluster 
diagrams for hydrogen bonded fluids has shown that a chemical equilibrium model 
can be used as an appropriate guide to the way in which the cluster diagrams should 
be resummed and to the way in which certain diagrams cancel each other. Since 
the same argument applies to any cluster which can form as a limited number of 
“ bonds ”, there is a direct connection between the way certain cluster diagrams 
cancel each other and the chemical association model. From this argument, it is 
concluded that the activity expansion with terms for pairs and triplets (KZ and Kg)* 
will be rapidly convergent for any strongly associating system in which aggregates 
greater than triplets are not important. 

The above discussion suggests that, using chemical association as a guideline, the 
activity expansion can be modified to fit many special situations. As one common 
example, consider a system which associates strongly and can form very large 
aggregates (for example, aqueous solutions of nucleic acids). The chemical associa- 
tion model is 

JG 
2A +A, 

I;: 

K :  

A2+A + A3 

A,-I+A+An. 
If we make the usual assumption that the equilibrium constants are related by 
Kn = K3 # K2, the data for many real systems can be fitted by this chemical 
equilibrium 9 22 The corresponding activity expansion [eqn (12)] becomes 

c = a+2K,”a2+3K,”K,”a3+4K,”Ko32a::+5K,”Ko~a5+ . . . 
. . .) (24) 

* K,” is a stepwise association constant, whereas Kn is an overall association constant. 
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1312 ACTIVITY EXPANSIONS 

and using 1 /(1 - x ) ~  = (1 +2x + 3x2 + 4x3 + . . . ), we obtain 
aK,” 

c = a  ( I - -  E;)+K;(I  - K,”a)2‘ 

This resummation of eqn (12) is just the one which should be useful when the chemical 
approximations used in deriving it are reasonable. 

3. ELECTROLYTE SOLUTIONS 

The previous discussion has shown that an activity expansion can represent the 
properties of systems with strongly associating species as well as the properties of 
systems where volume exclusion is the main contribution to the virial expansion. 
One of the continuing problems in the representation of the properties of electrolyte 
solutions is the question of at what precise point we call an electrolyte “ weak ” 
rather than “ strong ”. The decision is always arbitrary, and when the shift is made 
it is necessary to introduce new parameters to take into account the change from 
“ strong ” to “ weak ”. Consider, for example, the complexity of a system in which 
this shift occurs as a function of temperature. For this reason (as well as for the 
other advantages of the activity expansion) it was of interest to see if the same ideas 
could be applied to electrolyte solutions. 

In order to do this, it is convenient to consider eqn (1 3) as the fundamental equation 
for an activity expansion.* For a non-electrolyte solution containing Q solute 
components, this equation represents a series of CT non-linear equations for the 
activity coefficients of the Q species in terms of their concentrations and their sociation 
constants (KJ.  Once the activity coefficients are calculated by solving this set of 
non-linear equations, all of the other thermodynamic properties follow and can be 
calculated by eqn (14), (15), (16), etc. This is similar in procedure and degree of 
difficulty to the solution of a chemical equilibrium problem. In adapting eqn (13) 
for the representation of the properties of electrolyte solutions, the following con- 
straints were used : 

(1) In the limit of low concentration, the equation must approach the Debye- 
Huckel limiting law. 

(2) The equation must be compatible with the concentration dependence of the 
terms beyond the limiting law which have been derived rigorously from cluster 
expansion 2 5  

(3) In the limiting case of very strong association (e.g., acetic acid), the equation 
must be equivalent to an ion-association 

The only reasonable form that we have been able to find for eqn (13), given these 
constraints is 

yici = a, = yP[c,- anniKnly:] (26) 
n> 1 

where yP and y z  are Debye-Huckel type terms which correct for the reduction in the 
activity of the species i and the cluster It, respectively due to the ion atmosphere 
effects,? Considering the case where the sociation constants are positive, eqn (26) is 
most easily understood if the right-hand side is thought of an being the product of 
the “ free ’’ ion i concentration times the “ free ” ion activity coefficient, y?. The 
former is the stoichiometric concentration, cf, minus the concentration of i present 

* With this change, y becomes the fundamental quantity rather than Aex. There are some dis- 
advantages in this change.23 

t It should be noted that the 7; and y i  are not the stoichiometric activity coefficients. They are 
corrections for ion atmosphere effects and are equal to 1 for uncharged species. 
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in " dimers ", " trimers ", etc. According to the first constraint, yP must reduce to 
the Debye-Huckel limiting law value at low concentrations. One possible choice 
for yr  would be the limiting law itself, i.e., yP = exp ( - A ,  2; I+)  with I = 3 C cf 2:. 

However, this choice for ionic strength, I, is clearly not acceptable for strongly 
associating systems. Consider, for example, a 1 molar acetic acid solution which, 
on the present model, would contain as the components one molar stoichiometric 
concentration of H+ and Ac-. The resulting concentration ionic strength (I  = 1.0) 
would be too large and yp too small; knowing what we do about the tendency of 
Hf and Ac- to associate a better guess would be I = 0 and y4 = 1. In the spirit of 
the present development, we propose to use the Debye-Huckel Limiting Law 
expression, but with concentrations in the ionic strength term replaced by ionic 

1 

activities. The result is : 

rr" = 

I ,  = 
and 

with 
a, = K,an = K,c"yn 

where A,  is the Debye-Huckel limiting law slope, 2,is the charge on ion j ,  and I, 
is the ionic strength expressed in terms of activities rather than concentrations. The 
first term on the right-hand side of eqn (28) is the effective ionic strength due to the 
original ionic components (i), and the second sum is the effective ionic strength due 
ta aggregates of ions (clusters) that have formed in the solution. It is easily shown 
(see Appendix) that, in the limit of very low concentrations, eqn (27) and (28) approach 
the Debye-Huckel limiting law. At slightly higher concentrations only the first 
term in eqn (28) contributes significantly and the result is then just the Debye-Huckel 
limiting law with Z, expressed in terms of the activities of the original ionic com- 
ponents. The limiting law in this case has been derived by Vedenov 26 and also 
by Jones and Molling 27* 2 8  using a resummation of cluster integrals in an activity 
expansion. Thus, a Debye-Huckel expression using activities in the ionic strength 
term has just as much theoretical basis as one using concentration. As Jones and 
Molling 27 have pointed out, in actual fact, the activity expression is much better 
at higher concentrations in representing the properties of real ionic solutions. This 
is not surprising because in a qualitative way eqn (28) assumes that the effectiveness 
of an ion in contributing to the formation of an atmosphere around another ion is 
proportional to its activity, not its concentration. The second term in eqn (28) 
has not been derived on any theoretical basis but, as will be shown below, it is 
consistent with the known form of the density expansion of electrolyte solutions 
(the first and second constraints), and it must be present in order to satisfy the third 
constraint. The latter point is easiest to see by picking an extreme case. Consider, 
for example, the properties of mercurous chloride thought of as consisting of ionic 
components Hg+ and C1- (certainly at low enough concentrations, this salt would 
be a 1-1 electrolyte). The apparent ionic strength in a 0.1 molal solution would be 
0.1 mol dm-3. However, we know that due to association the actual species present 
are Hg;+ (0.05 mol dm-3) and C1- (0.1 mol dm-3) so that the true ionic strength 
would be 0.15 mol dm-3. With the use of eqn (26) and (27), the calculated contribu- 
tions of the first and second terms in eqn (28) to I, are about 0.05 and 0.10 mol dm-3, 
respectively. Thus, we see that both terms in eqn (28) are necessary to obtain the 
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1314 ACTIVITY EXPANSIONS 

right answer and that in the case of extreme association to a charged dimer (Hgi+) 
the second term can contribute even more to I, than does the first. 

We now turn back to eqn (26) and show how the third constraint dictates the 
way in which the ion atmosphere terms are added to eqn (26). For simplicity, we 
consider the case of a weak electrolyte, aqueous acetic acid, which in terms of eqn (26) 
is a two solute component solution. The components are the principal species 
believed to be present at infinite dilution as revealed by conductance measurements ; 
namely, H+ and Ac-. Applying eqn (26) to the activity of hydrogen ion in such a 
solution, we have : 

where K(HAc) is the association constant of acetic acid and, for simplicity, we have 
included only the pairwise association of HAc [K(HAc)] and one triplet term, 
K(HAc2). The ion-pairing model interpretation of eqn (29) is as follows : the term 
in curly brackets on the right side is the “ free ’’ H+ concentration. It consists of the 
stoichiometric Hf concentration, cH+, minus the concentration of H+ contained in 
the clusters HAc and HAcZ. For example, since 

K(HAC,) = UHA~-]UH+~A~- ,  2 

2 
a H A c T / Y k c -  = C H A ~ -  = aH+uAc-K(HAcr)/Y~Ac~. 

Dividing by the yo converts an activity to a free concentration because in an ion 
association model the activity is just the free concentration times the Debye-Huckel 
activity coefficient. In the case of acetic acid, y i A C  equals 1 since this is an uncharged 
species and there is no Debye-Huckel screening. However, such a term is necessary 
for the charged aggregate H(Ac);, which is included in the third term on the right hand 
side of eqn (29). In the ion-association model, the H+ activity is then given by the 
free concentration times the activity coefficient of the “ free ” ion, y&+. It should 
also be noted that it is just the presence of these y o  terms that produces Friedman’s 
limiting law of charge-symmetric mixtures.2 

Eqn (26), (27) and (28) are a compact set of equations for representing the 
properties of any mixture containing both electrolytes and non-electrolytes. The 
equations have the disadvantage that they are non-linear and, in the multi-component 
case, must be solved via a complex computer program. However, this is also true 
of any ion-association model for strongly associating solutions. It is also true for 
the more sophisticated equations using density expansions to represent the properties 
of mixtures of strong  electrolyte^.^ We believe that this disadvantage is far out- 
weighted by the following advantages : 

(1) the system of equations is a compact expression that represents the properties 
of any mixture of non-electrolytes, strong electrolytes, and weak electrolytes without 
any arbitrary assumption as to whether or not an electrolyte should be classified as 
weak or strong. This is particularly important when investigating a range of 
temperatures over which an electrolyte changes from strong to weak. 

(2) No arbitrary ion size parameters appear in our equations so that no ad hoc 
assumptions about their values are necessary. 

(3) Compared with the usual density expansions for the activities of 2 :2 electrolytes, 
the present equations can represent their thermodynamic properties up to much 
higher concentrations with fewer parameters. 

(4) Using the concepts in these equations, the authors have found that it is much 
easier to think about the properties of complex mixtures, since there are no arbitrary 
divisions into non-electrolytes, strong electrolytes and weak electrolytes. The 
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following examples illustrate the utility of these equations for representing the 
properties of electrolyte solutions. 

We begin by noting that one of the most striking deficiencies of the usual density 
expansions is that they do not give good fits of data for 2 : 2 electrolytes at low 
concentrations. The difficulty is illustrated in fig. 6 where the cell data of Rasaiah 
for ZnS04 30 are plotted in such a way that they must approach the Debye-Huckel 
limiting slope at m = 0.309 31 At low concentrations, the experimental points 
show an apparent slope greater than the Debye-Huckel slope, but this quickly shifts 
to apparent slopes less than the Debye-Hiickel slope at concentrations above 
0.007 mol dm-3.31 Attempts to fit this data to a density expansion including the 
Debye-Huckel limiting slope have failed. 30 Because of this difficulty, Rasaiah used 
a cube-root law to fit the low concentration data together with an assumed smooth 
transition to the Debye-Huckel limiting law. The cube-root law was used because 
it gives a very good fit to the low concentration data of a number of salts which show 
the same kind of deviations from the Debye-Huckel behaviour. In the case of 
Rasaiah's zinc sulphate data, the cube root law fits the first five experimental points 
using two adjustable constants with a standard deviation of 73 pV. Assuming a 
smooth transition to the Debye-Huckel limiting law then gives an extrapolated E" 
for the cell of 412.31 mV. The present equations* fit the same data with essentially 
the same accuracy and the same number of adjustable constants over a much wider 
concentration range. For instance, using the E" of the cell together with one sociation 
constant for the cation and anion [K(ZnSO,)], the first five data points can be fitted 
with a standard deviation of 82pV. As more experimental points are added, the 
standard deviation of the fit and the 95 % confidence limits of E" and K(ZnS0,) 
decrease until 8 points are reached and then increase. Our conclusion is that the 
fit with 8 points is the best two constant extrapolation of the data. The resulting 
E" is 412.55k0.40 mV and the standard deviation of the fit is 85 pV. This is 
essentially as good a fit as the cube root law which covers only the first five points 
(maximum concentration 0.0039 mol dm-3 as compared with 0.0088 mol dm-3). 
The present equations, therefore, give a good fit of the low concentration data for 
zinc sulphate with only a pairwise sociation constant. Fig. 6 shows a plot of the 
fit to the first 8 points and the way in which the present equations approach the 
Debye-Huckel limiting slope. It should be noted that there are no systematic 
deviations of the experimental points from the least squares fit. The problem with 
fitting these data with a density expansion is evident from fig. 6 which shows that the 
data points cross the Debye-Hiickel limiting law (DHLL) at about 0.007 mol kg-l. 
Thus, the term linear in m is called upon to perform the impossible task of representing 
both positive and negative deviations from the limiting law. However, the activity 
limiting law (ACTLL) [eqn (26)-(28) with all K, = 01 shown in fig. 6 is always below 
the experimental points at low concentrations, so that a single sociation constant can 
easily fit the data to 0.009 mol dm-3. There are a few 1-1 electrolytes which also 
show negative deviations from the Debye-Huckel limiting slope at very low con- 
centrations; it is probable that the present equations can also fit these data. 

* Eqn (26)-(28) were adopted to fit the cell data of Rasaiah by first rearranging the cell equation 
to E' = E"-k' lnykR, where E' is an experimentally known function of the observed e.m.f. and the 
concentrations of Znz+ and SO:- and k' = RT/F. Using the equations of Friedman l6 for the 
corrections from the Lewis-Randall (LR) standard state to the McMillan-Mayer (MM) standard 
state results in E" = E"-k' lnyyM where E" is again an experimentally known quantity. The 
least-squares fitting method involves finding the best values of E" and the K values of eqn (26)-(28) 
needed to minimize the deviations in E". This procedure gives E" on the molality scale at one 
atmosphere pressure because the fit is the same as that obtained by correcting the activity coefficients 
on the MM scale to the LR scale and then fitting the data. 
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* I  8.4- 

t4 

A similar procedure can be used with three constants : E", K(ZnS0,) and 
K(Zn,SOi+).* Again, points were added to the fit until the 95 % confidence limits 
of E" and the K values reached a minimum. Eliminating one experimental point 
at 0.008 87 mol kg-l (which seems to be in error by over 2 mV) the best three constant 
fit occurs with 14 data points to m(max) = 0.24moldm-3. The resulting E" is 
412.35 k0.50 mV, and the standard deviation of the fit is 130 pV. Because of its 
lower 95 % confidence limits, we believe the two constant extrapolations to be slightly 
superior. However, both extrapolations together with the cube root extrapolation 
of Rasaiah yield the same results well within the 95 % confidence limits. The values 
for KfZnSOJ derived by both activity expansion extrapolations are also very close 
together : 153 18 and 161 +21 kg mol-l. These sociation constants are also 
consistent with a variety of measurements of the association constant for ZnSO,. 

\ 
1 I I I 

0 0.02 0.04 0.06 0.08 3.10 

&/mol+ dm-4 

FIG. 6.-Plot of (E"-E")/k'c* = -In (y i ) /c*  for the ZnS04 cell data of Rasaiah. The intercept 
is the Debye-Huckel limiting slope. The Debye-Huckel limiting law is denoted by DHLL, and 
the activity limiting law by ACTLL. (This limiting law is given by eqn (26)-(28) with all Kvalues = 
0). Solid lines also give the values of -ln(y*)/c* from eqn (26)-(28) with K(ZnS04) = 100 and 
with K(ZnS04) = 153. Note the apparently random deviations of the experimental points from 

the curve with K(ZnS04) = 153. 

Brown and Prue 32 surveyed previous literature and found values ranging from 222 
to 154 kg mol-l using e.m.f., solubility, conductance and optical techniques. Brown 
and Prue also found values from 100 to 238 kg mol-l, depending on what assumptions 
were made about the distance of closest approach to be used in the Debye-Hiickel 
equation. The results of these fits indicate that the activity coefficient of zinc sulphate 
can be fitted adequately with a pairwise sociation constant up to 0.009 mol dm-3 and 
that adding a triplet sociation constant increases the range which can be fit up to 
0.24 mol dm-3. It seems likely that a chemical equilibrium model would also be 
able to extrapolate the cell data of Rasaiah since the problem with the density 
expansion is the strong association of these salts. Lilley and Briggs 33 have shown 
that this approach works well in the case of calcium sulphate. The advantage of 

* This is the sociation constant for 2Zn2+ + SO:- -+ Zn2SO:+. The equations cannot distinguish 
between this and K[Zn(SO4):-]. 
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the present approach is that it is not necessary to decide ahead of time whether the 
salt is strongly associated, and that if it is associated it is not necessary to use any 
arbitrary ion size parameters for the " unassociated " electrolyte. 

As an example of the ability of the equations to fit data for 1 : 1 electrolytes, the 
cell data of Gupta, Hills and Ives 34 on HCI solutions were fitted in a similar manner 
after converting to the McMillan-Mayer state. The best extrapolation with two 
adjustable parameters was for 4 experimental points (mCmax) = 0.028 mol kg-l) giving 
E" = 268.27 f0.06 mV and K(H+, Cl-) = - 1.544k0.09 with a standard deviation of 
the fit of 0.01 mV. The best extrapolations with three adjustable parameters was with 
10 experimental points (mCmax) = 0.098 mol kg-I). Using two different pairwise 
sociation constants, the results were E O = 268.29 & 0.15 mV, K(H+, C1-) = - 1.41 5 f 
0.31 and K(H+, H+) = -0.0964f0.06 with a standard deviation of fit of 0.049 mV. 
Using one triplet sociation constant gave E" = 268.30+0.15 mV, K(H+, Cl-) = 
- 1.589 k0.20, and K(H+, C1-, H+) = - 1.404 f 1.02 with a standard deviation of 
0.05 mV. These results show that the activity expansion is about as good as the 
density expansion. Using a density expansion, Gupta, Hills and Ives 34 found 
E" = 268.18 mV. These results show that for unassociated electrolytes the activity 
expansion is not superior to the usual density expansion with an ion-size parameter. 
It seems probable that the large volume exclusion effects in strong electrolytes 
(K+- is negative) require quartet terms above about rn = 0.10 mol kg-l. 

There are a number of possible ways of extending the utility of the present 
equations for electrolyte solutions which we have not yet had the time to explore. 
Two of these are briefly discussed below. 
(1) For charged asymmetric mixtures there is a known higher order limiting law 24* 2 5  

which gives a term proportional to c In c for the logarithm of the activity coefficient. 
This limiting law is a function only of the concentration, the ions and the properties 
of the solvent. For this reason it seems quite likely that it will be useful, in the case 
of charge-asymmetric mixtures to include this limiting law in eqn (27) (again replacing 
concentrations by activities). This would give a screening term that includes all of 
the known effects that are only dependent on the properties of the solvent, as required 
by constraint 2. Adding this term to the equations would build in to them all of 
the higher order limiting laws for mixtures discussed by F ~ i e d m a n . ~ ~ '  2 5 *  35 

(2) Because of the way in which eqn (26) treats the ions as components, there is the 
possibility of getting a rational set of single ion activity coefficients from this equation. 
These would be based on the convention that the single-ion activity coefficient 
approaches 1 as the concentration goes to zero. Using the hypernetted chain equation 
in the appropriate form for electrolyte solutions, Friedman 36 has shown that it is 
possible, at least roughly, to separate out the effects of oppositely charged ion 
interactions from like-charged ion interactions. However, it was not possible with 
the data available to separate out which effects were due to interactions between two 
positive charges or two negative charges. For a symmetrical electrolyte, eqn (26) 
has the same properties but, for charge-asymmetric electrolytes such as MgClz, the 
three pairwise interactions in eqn (26) have different concentration dependences. 
The difference in concentration dependence is in the KJy; term: the MgCl+ pair 
has a charge of + I, the MgMg4+ pair has a charge of +4, and the C1Cl2- pair 
has a charge of -2. Thus, the Debye-Huckel screening effects ( yo )  for these three 
pairs have differing concentration dependences and, at least in principle, they can be 
separated if the activity coefficients are known with sufficient accuracy. This 
possibility is also implicit in earlier attempts to add y o  to an association constant 
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4. EQUATIONS APPLICABLE TO CONDITIONS OF 
CONSTANT PRESSURE 

For most practical calculations of equilibria in complex natural mixtures, the 
present equations are awkward because of the need for corrections to the McMillan- 
Mayer standard state. The purpose of this section is to point out that the equations 
with the concentration, c, replaced by the molality, m, have just as much theoretical 
justification 3 8  as the equations in the McMillan-Mayer standard state. The 
advantage of the McMillan-Mayer standard state is not in its rigour but in the 
simpler relationship of the resulting sociation constants to integrals involving 
potentials of average force. The alternate theory has been derived by Hill starting 
with a " semigrand " partition function for a system at constant P, T, number ( N , )  
of solvent molecules and solute activity. In this approach the solvent activity plays 
the same role that p V  plays in the Grand canonical partition function and N 2 / N 1  
(which is proportional to molality) replaces c2. The resulting equations 3 8  can be 
transformed to the direct analogue of eqn (12) and (14): 

where m is the molality, 4 is the molal osmotic coefficient, and y is the molal activity 
coefficient. We shall call KL a molality scale sociation constant by analogy even 
though its connection with an excess concentration is not clear. Hill's derivation 
is for one component. We have assumed by analogy that the multi-component 
equations are of the same form as eqn (12) and (14). In addition, the same arguments 
which lead to the equations for electrolytes can be applied to the constant pressure 
equations. 

Although it is more difficult to relate the constants in the molality equations to 
potentials of average force and excess concentrations, they are very much more useful 
for practical calculations. The following examples illustrate this utility. By analogy 
with eqn (20) and (21), we have 

( 4 - y ) I r n  y 2  = Ki4-K; a (32) 

(33) (l-$)/m = -B2-B3 m-B4m2- . . . 
where a is the molal activity, my. 

In fig. 5 the urea data are plotted according to these two equations ; the difference 
between the two ways of representing the results is quite striking. The activity 
expansion requires only two terms to represent the data to 12 mol kg-l, whereas more 
are required in a molality expansion. This latter point is confirmed by the expressions 
given by Ellerton and Dunlop l4 who used four coefficients to represent the data to 
7 mol kg-l. 

For electrolyte solutions on the molality scale, eqn (26)-(28) become 

yimi = ai = yP[rni- anniKk/y,"] (34) 

yy = exp (-A;z;JI:) (35) 
n > l  

where AS, is the Debye-Huckel limiting slope on the molality scale and Zi is given by 
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TABLE 2.-LEMT-SQUARES FJT OF y* TO EQN (34)-(36) 
m(max)* 

NO /mol kg-1 
K'(+ -1" 
Ikg mol-1 

K'(+ +) 
/kg mol-1 

( A )  cuso4 
4 0.01 199(3)e 0.06 

14 1 .o 225(27) 0.97 
11 0.5 199(11) 0.60(26) 0.25 
11 0.5 195(5) 844(137) 0.11 
11 0.5 195 - 0.047 903 0.11 
16 1.4 198(9) 676( 189) 0.22 

(B)  KCl 
7 0.1 - 1.053(46) 0.09 

11 0.5 - 1.055(58) - 0.01 37(43) 0.13 
11 0.5 - 1.074(50) -0.193(6 1) 0.12 
11 0.5 - 1.085 + 0.0061 - 0.2756 0.12 
16 1 .o - 1.162(40) - 0.089(20) 0.23 

a Number of data points included in the fit. b Maximum molality included in the fit. C Forlthe 
salt  MX, K'( + -) is K'(MX) and K'(+ + -) is K'(M2X). d Standard deviation of the fit. e The 
numbers in parentheses are estimated 95 % confidence limits of the last digit. Thus, 0.015(20) is 
0.01 5 k 0.020. 

Pitzer 39 has reviewed the literature data on 2 : 2 electrolytes and found that there 
is an extensive and particularly concordant array of experimental data for copper 
sulphate. Thus, this salt was chosen as an example of the use of eqn (34)-(36) for 

-3 I I I I I I I I 

0 0.1 0.2 0.3 0.4 0.5 0 . 6  0.7 

rn*/mol* kg-+ 

FIG. 7.-Plot of lnyf against m* for CuS04 and KCI. The Debye-Hiickel limiting law (DHLL) 
and activity limiting law (ACTLL) for 2 : 2 and 1 : 1 electrolytes are also given. The curve labelled 
CuS04 is the best fit to the CuS04 data ; K(CuS04) = 194.8 kg mo1-1 and K(Cu2SO:+) = 844.2 kg2 
mo1-2. Curve A is for K(CuS04) = 194.8 kgmol-l and K(Cu2SO;+) = 0. The curve labelled 
KCI is the best fit to the KCl data ; K(KC1) = - 1.074 kg mol-1 and K(K,Cl+) = -0.193 kg2 moP2. 

The same low concentration behaviour found for ZnS04 (fig. 6) is found for CuS04. 
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2 : 2 electrolytes. The results of fitting these smooth data for copper sulphate are 
given in table 2 and fig. 7. With one pairwise sociation constant, there are significant 
deviations in the fit above 0.01 mol kg-l, although the data can be fit to 1 mol kg-l 
with a standard deviation of only 1 %. Fits with two sociation constants show that 
a triplet term, K’(Cu,SO$+), is much more useful in fitting the data than a pair 
sociation constant involving the two cations, K’(Cu:+), especially at high concentra- 
tions. This is just what is expected because of the very strong electrostatic repulsion 
between the cations. With two constants, the activity coefficients can be fit to 
1.4 mol kg-l with a standard deviation of 0.0022. These results are comparable to 
those obtained by Pitzer using a chemical association model with pair and triplet 
association and an ion-size parameter equal to the Bjerrum distance, q. In contrast 
to this, it is very difficult to fit this data with a power series in molality. Pitzer and 
Mayorga 40 succeeded in fitting the data using a complex equation with four adjustable 
constants for each salt (Po,  pl, p,, and C )  together with three parameters that were 
adjusted to fit the data for all of the various salts (b, a,, and a,). Using the resulting 
equation, Pitzer and Mayorga 40 fitted the data for copper sulphate up to 1.4 molal 
with a standard deviation of 0.003. 

As an example of a 1 : 1 electrolyte, the smoothed activity coefficients of Hamer 
and Wu41 for KC1 were fitted to the present equations. Some of the results are 
given in table 2. Using only one adjustable constant gave K’(KC1) = - 1.0527 
0.045 kg mol-1 and a standard deviation of the fit of 0.0009 for 7 data points with a 
maximum molality of 0.1 mol kg-l. Similarly, using two adjustable constants gave 
good fits (Q = 0.0013) up to 0.5 mol kg-l. This is approximately the range of data 
that can be fit with a molality expansion using an extended Debye-Huckel equation. 
A plot of the fit is given in fig. 7 together with the Debye-Hiickel limiting law and 
the activity limiting law. For KCl the activity coefficients are always above the 
activity limiting law so the sociation constants are always negative. 

In principle, the present equations have the ability to distinguish between sociation 
between a cation and anion [K’(CuSO,)] and sociation between two cations, 
[K’(Cui+)]. This is due to the difference in the charges and hence ion-atmosphere of 
the sociated species ; one pair has a charge of zero, while the other pair has a charge 
of +4. As a test of whether this distinction is feasible with real data, an attempt 
was made to fit the copper sulphate data with strong pairing between the cations, 
by choosing initial K’ values which favoured K’(Cug+) over K’(CuS04) (199 
and 0.60, respectively). When this was attempted, the least squares program 
was unable to find a valid solution to the equation. However, when both initial 
K’ values were set equal to zero so as not to bias the result, the least squares program 
went quickly to K‘(CuS0,) = 199 and K’(Cu4-t) = 0.60 using data with a maximum 
molality of 0.5 mol kg-l. The standard deviation of the fit was 0.0025. Thus, at 
least in this case, the equations can distinguish between the two kinds of sociation. 
A similar test using the KCl data showed that the same kind of discrimination was 
possible. 

When attempts were made to use three adjustable constants with any of the above 
data for electrolytes, it was found that there was very little improvement in the quality 
of the fit. (See table 2 for some examples.) This is because of the strong correlation 
between the variables. However, table 2 shows that the correlation is such that the 
values of K(MX) are independent (within the 95 % confidence limits) of whether 
K(MM) or K(M2X) or both were also used in fitting the data. Thus, K ( M X )  can 
be distinguished from K(MM) and K(M2X) with good accuracy. For copper sulphate 
the value of K(Cu;+) was very small, but it changed sign when a K(Cu2SOi+) term 
was also used in the fit (see table 2). 
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Similarly, the values of K(K$+) and K(K,Cl+) changed sign as the third sociation 
constant was added to the fit. These results indicate that weak cation-cation 
sociation cannot be distinguished from three-ion sociation. In general, table 2 shows 
that either fit using two constants [K(MX) +K(M,) or K(MX) +K(M,X)J gave about 
the same accuracy. It is observed, however, that the fit with only pairs tends to be 
slightly better with data limited to low concentrations and this changes as the 
concentration limit is increased. This is just the behaviour expected from the 
concentration dependence of these terms. 
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APPENDIX 

An outline of the proof is given below. From eqn (26)-(28) it is easy to see that 
the sociation constants, K,,, appear in Iny, only in terms of order c [O(c)] or higher. 
Thus, to obtain the leading term in the activity expansion [O(c3)], we need not consider 
any terms involving K,, or any terms of order higher than c*. With these simplifica- 
tions, eqn (26)-(28) reduce to : 

Yi = YP ( A 0  

Therefore, 
I ,  = 3 C c~Z: - 3 C ciZfA,I$ 

i i 

= I+O(C3). 

Thus, yi  reduces to y4 and I, reduces to I. It immediately follows that Inyi = 
- A ,  Zf I3 for an ionic species and that for any binary electrolyte In y* = 
-A,IZ+ Z-[Z*, which is the Debye-Huckel Limiting Law. 

Note added in proof: The application of an activity expansion approach to plasmas has 
been discussed by G. P. Baxtsch and W. Ebeling, Beitr. Plasmaphysik, 1971, 11, 393; F. J. 
Rogers and H. E. DeWitt, Phys. Rev., 1973, A8,1061; F. J. Rogers, Phys. Rev., 1974, AlO, 
2441; W. Ebeling, Physica, 1974, 73, 573. 

GLOSSARY 

AeX = excess Helmholtz free energy 
ai = activity of ith species = Yici or yrn depending on the concentration scale 

A ,  = Debye-Huckel limiting slope 
B n  = virial coefficient involving the set n 
6, = cluster integral of Mayer involving the set n 

(CI)N = configuration integral for N particles 
CPF = Canonical Partition Function 

c = concentration 

I = molar ionic strength = 4 
GCPF = Grand Canonical Partition Function 

ciZt 
i 
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1322 ACTIVITY E X P A N S I O N S  

la = molar ionic strength expressed in terms of activities [eqn (28)] 
1; = molal ionic strength expressed in terms of activities 

Kn = sociation constant for the molecules or ions in the set n = b,N(n-l) 
K,' = sociation constant on the molal scale 
k = Boltzmann's constant 
N = Avogadro's constant 
N = number of molecules in the system 
It = a set of molecules or ions containing n1 of species 1, n2 of species, . . . and ylb 

ni = number of molecules or ions of species i in the set n 
p = pressure 

R = gas constant 
T = temperature 

U e x  = excess internal energy 
V = volume of the system 
W = potential of average force 
Zi = charge on ion i or 2, = charge on cluster of the set n 

of species CT 

$d = pressure if the system were ideal 

z = activity = (CI ) lA /V;  z --+ N/Vas c -+ 0 

yi = ai/ci or ailmi, depending on concentration scale 
7; = corrections for screening of species i by the ion atmosphere 
p = N / V  = particle number density 
p = chemical potential 
A = absolute activity = exp (p /kT)  
4 = osmotic coefficient for a solution or compressibility factor for a gas 

z" = ZI' z y  .. . 2" 
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