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POSITIVITY OF EQUIVARIANT GROMOV-WITTEN

INVARIANTS

DAVE ANDERSON AND LINDA CHEN

Abstract. We show that the equivariant Gromov-Witten invariants of
a projective homogeneous space G/P exhibit Graham-positivity: when
expressed as polynomials in the positive roots, they have nonnegative
coefficients.

1. Introduction

Let X = G/P be a projective homogeneous variety, for a complex reduc-
tive Lie group G and parabolic subgroup P . Fix a maximal torus and Borel
subgroup T ⊂ B ⊆ P , and let ∆ = {α1, . . . , αn} be the corresponding set
of simple roots, making the roots of B positive. Let WP ⊆ W be the Weyl
groups for P and G, respectively. Let B− be the opposite Borel subgroup.
The classes of the Schubert varieties X(w) = BwP/P and opposite Schu-

bert varieties Y (w) = B−wP/P give Poincaré dual bases of the equivariant
cohomology ring H∗

TX, as w ranges over the set WP of minimal coset repre-
sentatives for W/WP . Write x(w) = [X(w)]T and y(w) = [Y (w)]T for these
classes.

A positivity property for multiplication in these bases was proved by
Graham:

Theorem 1.1 ([G]). Writing

y(u) · y(v) =
∑

w

cwu,v y(w)

in H∗
TX, the coefficient cwu,v lies in N[α1, . . . , αn].

Following [K], the equivariant Gromov-Witten invariants are defined as
follows. Let d ∈ H2(X,Z) be an effective class; taking the basis of Schu-
bert curves x(sα), one can identify d with a tuple of nonnegative integers
(d1, . . . , dk). Let M = M0,r+1(X,d) denote the Kontsevich moduli space of

stable maps. This comes with r + 1 evaluation maps evi : M → X, as well
as the standard map π : M → pt.
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Definition 1.2. The equivariant Gromov-Witten invariant associated
to classes σ1, . . . , σr+1 is

IT
d
(σ1 · · · σr+1) := πT

∗ (ev
∗
1σ1 · · · ev

∗
r+1σr+1)

in H∗
T (pt), where πT

∗ is the equivariant pushforward H∗
TM → H∗

T (pt).

When r = 2, these define equivariant quantum Littlewood-Richardson
(EQLR) coefficients:

cw,d
u,v = ITd (y(u) · y(v) · x(w)).

The EQLR coefficients were shown to be Graham-positive, in the sense of
Theorem 1.1, by Mihalcea in [M]. Remarkably, they define an associative
product in the equivariant (small) quantum cohomology ring QH∗

TX, via

y(u) ◦ y(v) =
∑

w,d

qd cw,d
u,v y(w),

so Mihalcea’s result is a generalization of Graham’s to the setting of equi-
variant quantum Schubert calculus.

In this note, we will show that the multiple-point equivariant Gromov-
Witten invariants are Graham-positive:

Theorem 1.3. For any elements v1, . . . , vr, w ∈ WP , the equivariant Gromov-
Witten invariant

ITd (y(v1) · · · y(vr) · x(w))

lies in N[α1, . . . , αn].

Associativity of the equivariant quantum ring QH∗
TX defines (general-

ized) EQLR coefficients cw,d
v1,...,vr :

y(v1) ◦ · · · ◦ y(vr) =
∑

w,d

qd cw,d
v1,...,vr

y(w).

By induction using the r = 2 case of Theorem 1.3, it follows that these EQLR
coefficients are also Graham-positive; indeed, the associativity relations are
subtraction-free. This gives a new proof of Mihalcea’s positivity theorem.

For r > 2, however, the EQLR coefficients cw,d
v1,...,vr are not the same as the

equivariant Gromov-Witten invariants in Theorem 1.3.
The proof of Theorem 1.3 is given in §4; the idea is to represent the

coefficients of this polynomial as degrees of effective zero-cycles, using a
transversality argument (Theorem 4.4). An inspection of Mihalcea’s proof
of positivity for EQLR coefficients suggests that his method should also work
for Gromov-Witten invariants, but we find our geometric interpretation of
the coefficients appealing. Moreover, we use the dimension estimates from
§4 to derive a Giambelli formula for QH∗

T (SLn/P ) in [AC].

Remark 1.4. As in [G], there is a corresponding positivity theorem with
the roles of positive and negative roots interchanged: the Gromov-Witten
invariants IT

d
(x(v1) · · · x(vr)·y(w)) lie in N[−α1, . . . ,−αn]. All the arguments
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proceed in exactly the same manner. In fact, it is this version (for r = 2)
that is treated in [M].

Acknowledgements. We thank Leonardo Mihalcea for useful comments. This
project began in March 2010 at the AIM workshop on Localization Tech-
niques in Equivariant Cohomology, and we thank William Fulton, Rebecca
Goldin, and Julianna Tymoczko for organizing that meeting.

2. Setup

We assumeG is an adjoint group, so that the simple roots ∆ = {α1, . . . , αn}
form a basis for the character group of T . We fix the basis−∆ = {−α1, . . . ,−αn}
of negative simple roots, and use it to identify T with (C∗)n.

2.1. Equivariant cohomology. Let ET → BT be the universal principal
T -bundle; that is, ET is a contractible space with a free right T -action, and
BT = ET/T . By definition, the equivariant cohomology of a T -variety Z
is the ordinary (singular) cohomology of the Borel mixing space ET ×T Z.
(This notation means quotient by the relation (e · t, z) ∼ (e, t · z).) While
ET is infinite-dimensional, it may be approximated by finite-dimensional
smooth varieties. We will set E = (Cm

r {0})n, with T = (C∗)n acting by
scaling each factor. For fixed k and m ≫ 0, one has natural isomorphisms

H∗
TZ := H∗(ET ×T Z) ∼= H∗(E×T Z),

so any given computation may be done with these approximation spaces.
Note that B = E/T is isomorphic to (Pm−1)n. For a T -variety Z, we will

generally use calligraphic letters to denote the corresponding approximation
space: Z = E×T Z, always understanding a suitably large fixed m. This is
a fiber bundle over B, with fiber Z.

For each j = 0, . . . ,m− 1, we fix transverse linear subspaces Pm−1−j and

P̃
j inside P

m−1, and for each multi-index J = (j1, . . . , jn) with 0 ≤ ji ≤
m− 1, we set

BJ = P̃
j1 × · · · × P̃

jn and B
J = P

m−1−j1 × · · · × P
m−1−jn .

So dimBJ = codimBJ = |J | := j1+· · ·+jn. Similarly, write ZJ = (πT )−1BJ

and ZJ = (πT )−1BJ , where πT : Z → B is the projection. The notation is
chosen to suggest an identification of the pushforward for this fiber bundle
with the equivariant pushforward πT

∗ : H∗
TZ → H∗

T (pt).
Let Oi(−1) be the tautological bundle on the ith factor of B = (Pm−1)n.

The choice of basis −∆ for the character group of T yields an equality
αi = c1(Oi(1)). If α = a1α1 + · · · + anαn is a root, we will sometimes
write O(α) = O1(a1) ⊗ · · · ⊗ On(an) for the corresponding line bundle, so
c1(O(α)) = α. Note that O(α) is globally generated if and only if α is a
positive root.

From the definitions, we have

[BJ ] = αJ := αj1
1 · · ·αjn

n



4 DAVE ANDERSON AND LINDA CHEN

in H∗
B. As a consequence, suppose c =

∑
J cJα

J is an element of H∗
B =

H∗
T (pt), with cJ ∈ Z. Using Poincaré duality on B, we have cJ = πB

∗ (c·[BJ ]),

where πB is the map B → pt.
When c = πT

∗ (σ) comes from a class σ ∈ H∗
TZ = H∗Z for a complete

T -variety Z, we have

cJ = πZ
∗ (σ · [ZJ ]),(∗)

using the projection formula and the fact that (πT )∗[BJ ] = [ZJ ]. (The latter
holds since πT : Z → B is flat; for a more general argument in the case where
Z is Cohen-Macaulay, see [FPr, Lemma, p. 108].)

2.2. Stable maps. We briefly summarize some basic facts about the space
of stable maps; proofs and details may be found in [FPa]. As always, X =
G/P . The (coarse) moduli space M = M 0,r+1(X,d) parametrizes data
(f,C, p1, . . . , pr+1), where C is a connected nodal curve of genus 0, and
f : C → X is a map with f∗[C] = d in H2(X,Z). (Stability means that
any irreducible component of C which is collapsed by f has at least three
“special” points, i.e., marked points pi or nodes.)

The space of stable maps is an irreducible projective variety of dimension

dimM = dimX + 〈c1(TX),d〉 + r − 2,

and has quotient singularities, and therefore rational singularities; in partic-
ular, it is Cohen-Macaulay. The locus parametrizing maps with irreducible
domain is a dense open subsetM = M0,r+1(X,d) ⊆ M , and the complement

is a divisor ∂M = M rM .
There are natural evaluation maps evi : M → X, defined by sending

a stable map (f,C, p1, . . . , pr+1) to f(pi). The group G acts on M by g ·
(f,C, {pi}) = (g ·f,C, {pi}), and the evaluation maps are equivariant for the
actions of G on M and X. Considering the induced action of T ⊂ G, we
obtain maps evTi : M → X on Borel mixing spaces, which commute with
the projections to B.

Remark 2.1. The significance ofM being Cohen-Macaulay is that the usual
apparatus of intersection theory applies; see especially Lemma 4.2 below. In
fact, the corresponding moduli stack is smooth, so one could argue directly
using intersection theory on stacks.

3. A group action

In [A] and [AGM], a large group action on the mixing space X was con-
structed; we describe it here. The idea is to mix the transitive action of
(PGLm)n on B with a “fiberwise” action by Borel groups. Let T act on G by
conjugation, and let G = E×T G be the corresponding group scheme over B.
Because T acts by conjugation, the evident action (E×G)×E(E×X) → E×X
descends to an action G ×B X → X .

Let U ⊂ B ⊂ G be the unipotent radical of B, and let U ⊂ B ⊂ G be the
corresponding group bundles over B. As a variety, U is isomorphic to the
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vector bundle
⊕

α∈R+ O(α) on B, where the sum is over the positive roots.
Now consider the group of sections Γ0 = HomB(B,U); this is a connected
algebraic group over C. As observed in §2.1, each O(α) is globally generated.
It follows that for each x ∈ B, the map Γ0 → Ux given by evaluating sections
at x is surjective, and therefore we have:

Lemma 3.1 ([AGM, Lemma 6.3]). Let Γ be the mixing group Γ0 ⋊

(PGLm)n, where (PGLm)n acts on Γ0 via its action on B. Then Γ is a
connected linear algebraic group acting on X , with (finitely many) orbits
whose closures are the Schubert bundles X (w).

Similarly, the group Γ(r) = Γr
0⋊(PGLm)n acts on the r-fold fiber product

X ×B · · · ×B X , with orbit closures X (w1)×B · · · ×B X (wr).

4. Transverality

A map f : Y → X is said to be dimensionally transverse to a subva-
riety W ⊆ X if codimY (f

−1W ) = codimX(W ). We will need the following
version of Kleiman’s transversality theorem; see [Kl] and [S]. As a matter of
notation, if a group Γ acts on X, we write γf : γY → X for the composition

Y
f
−→ X

·γ
−→ X, i.e., the translation of f by the action of γ ∈ Γ.

Proposition 4.1. Let Γ be a group acting on a smooth variety X, and
suppose f : Y → X is dimensionally transverse to the orbits of Γ. Assume
Y is Cohen-Macaulay. Let g : Z → X be any map. Then for a general
element γ ∈ Γ, the fiber product Vγ = γY ×X Z has dimension equal to
dimY + dimZ − dimX.

The essential point in the proof is that the hypotheses imply the map
Γ× Y → X is flat.

We will also use the following lemma:

Lemma 4.2 ([FPr, Lemma, p. 108]). Let f : Z → X be a morphism from
a pure-dimensional Cohen-Macaulay scheme Z to a nonsingular variety X,
and let W ⊆ X be a closed Cohen-Macaulay subscheme of pure codimen-
sion d. Let V = f−1W , and assume codimZ(V ) = d. Then V is Cohen-
Macaulay, and f∗[W ] = [V ].

Now resume the previous notation, so X = G/P and M = M 0,r+1(X,d).

Since each evaluation map evi : M → X is G-equivariant, it is flat. If
W ⊆ X is any Cohen-Macaulay subscheme of codimension d, it follows that
ev−1

i W ⊆ M has the same properties, and similarly, (evTi )
−1W ⊆ M. In

particular, the subscheme

Z = (evTr+1)
−1(X (w)) ⊆ M

is Cohen-Macaulay of codimension dimX−ℓ(w), and we have [Z] = (evTr+1)
∗(x(w))

by Lemma 4.2. Similarly, we have

[ZJ ] = (evTr+1)
∗(x(w)) · [MJ ](†)
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Consider the map ev = ev1 × · · · × evr : M → Xr and the corresponding
map on mixing spaces evT : M → X r. Let Y = Y(v1) ×B × · · · ×B Y(vr),
and let f be the inclusion of Y in the r-fold fiber product X r.

Lemma 4.3. Let γ = (γ1, . . . , γr) be a general element in Γ(r).

(a) The intersection

Vγ = (evT1 )
−1(γ1Y(v1)) ∩ · · · ∩ (evTr )

−1(γrY(vr)) ∩ ZJ

= γY ×X r ZJ

is Cohen-Macaulay and pure-dimensional, of dimension dimM +
|J | − dimX + ℓ(w) − ℓ(v1) − · · · − ℓ(vr). (In the fiber product, ZJ

maps to X r by the restriction of evT .)

(b) Similarly, the intersection

∂Vγ = (evT1 )
−1(γ1Y(v1)) ∩ · · · ∩ (evTr )

−1(γrY(vr)) ∩ ZJ ∩ ∂M

= γY ×X r (ZJ ∩ ∂M)

has pure dimension dimM+|J |−dimX+ℓ(w)−ℓ(v1)−· · ·−ℓ(vr)−1.

In particular, when dimM + |J | − dimX + ℓ(w)− ℓ(v1)− · · · − ℓ(vr) = 0,
the intersection Vγ consists of finitely many points contained in M.

Proof. Note that ZJ is Cohen-Macaulay (since Z is), of dimension dimM +
|J | − dimX + ℓ(w). Each opposite Schubert bundle Y(v) intersects each
Γ-orbit closure X (w) properly, so the map f : Y →֒ X r is dimensionally

transverse to the Γ(r)-orbits. The first statement follows by an application
of Proposition 4.1.

The second statement is proved similarly; note that the divisor ∂M is
Cohen-Macaulay and G-invariant, and the same argument as before shows
that ZJ ∩ ∂M is a Cohen-Macaulay divisor in ZJ . �

We can now prove Theorem 1.3. In fact, it follows immediately from (∗),
together with a more precise statement.

Theorem 4.4. Write IT
d
(y(v1) · · · y(vr) ·x(w)) =

∑
cJα

J in H∗
T (pt). Then,

with notation as in Lemma 4.3, we have

cJ = deg(Vγ)

when dimM + |J | − dimX + ℓ(w) − ℓ(v1) − · · · − ℓ(vr) = 0, and cJ = 0
otherwise.

In particular, since Vγ is an effective cycle, cJ is a nonnegative integer.

Proof. Using (∗) from §2.1, we have

cJ = πM
∗ ((evT1 )

∗y(v1) · · · (ev
T
r )

∗y(vr) · (ev
T
r+1)

∗x(w) · [MJ ]).

The claim is that (evT1 )
∗y(v1) · · · (ev

T
r )

∗y(vr) · (ev
T
r+1)

∗x(w) · [MJ ] = [Vγ ] in

H∗M.
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First observe that (evT1 )
∗y(v1) · · · (ev

T
r )

∗y(vr) = (evT )∗(y(v1)×· · ·×y(vr)).

Since Γ(r) is connected, we have [γY] = [Y] = y(v1)×· · ·×y(r) in H∗(X r) =
H∗

T (X
r). By the same argument as in the paragraph after Lemma 4.2, we

have [(evT )−1(γY)] = (evT )∗(y(v1)× · · · × y(vr)).
By (†), we have [ZJ ] = (evTr+1)

∗x(w) · [MJ ]. Since (evT )−1(γY) and ZJ

intersect properly in Vγ by Lemma 4.3, we have [(evT )−1(γY)] · [ZJ ] = [Vγ ],
as desired. �

Remark 4.5. Let M0,r+1 be the moduli space of stable curves with r + 1
marked points; this is a nonsingular projective variety of dimension r −
2. Since T acts trivially on this space, the corresponding mixing space is
M0,r+1 = B ×M 0,r+1. The forgetful map ϕ : M → M0,r+1 induces a map

M → M0,r+1. Let ϕ̃ : M → M0,r+1 be the composition with the second

projection, and for x ∈ M0,r+1, write M(x) = ϕ̃−1(x). Using the notation
of Lemma 4.3, the same arguments used in the proof of the lemma also
establish the following dimension counts:

(a) Let Vγ(x) = Vγ ∩ M(x). Then Vγ(x) is Cohen-Macaulay, of pure

dimension dimM+ |J |−(dimX−ℓ(w))−ℓ(v1)−· · ·−ℓ(vr)−(r−2).

(b) Let ∂Vγ(x) = ∂Vγ ∩M(x). Then ∂Vγ(x) is Cohen-Macaulay, of pure

dimension dimM+|J |−(dimX−ℓ(w))−ℓ(v1)−· · ·−ℓ(vr)−(r−2)−1.
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