
Swarthmore College Swarthmore College 

Works Works 

Mathematics & Statistics Faculty Works Mathematics & Statistics 

2003 

Directed Acyclic Graphs Directed Acyclic Graphs 

Stephen B. Maurer , '67 
Swarthmore College, smaurer1@swarthmore.edu 

Follow this and additional works at: https://works.swarthmore.edu/fac-math-stat 

 Part of the Discrete Mathematics and Combinatorics Commons 

Let us know how access to these works benefits you 

 

Recommended Citation Recommended Citation 
Stephen B. Maurer , '67. (2003). 1. "Directed Acyclic Graphs". Handbook Of Graph Theory. 142-155. DOI: 
10.1201/b16132-16 
https://works.swarthmore.edu/fac-math-stat/111 

This work is brought to you for free by Swarthmore College Libraries' Works. It has been accepted for inclusion in 
Mathematics & Statistics Faculty Works by an authorized administrator of Works. For more information, please 
contact myworks@swarthmore.edu. 

https://works.swarthmore.edu/
https://works.swarthmore.edu/fac-math-stat
https://works.swarthmore.edu/math-stat
https://works.swarthmore.edu/fac-math-stat?utm_source=works.swarthmore.edu%2Ffac-math-stat%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/178?utm_source=works.swarthmore.edu%2Ffac-math-stat%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
https://forms.gle/4MB8mE2GywC5965J8
https://works.swarthmore.edu/fac-math-stat/111
mailto:myworks@swarthmore.edu


142 Chapter 3 DIRECTED GRAPHS

3.2 DIRECTED ACYCLIC GRAPHS

Stephen B. Maurer, Swarthmore College

3.2.1 Examples and Basic Facts
3.2.2 Rooted Trees
3.2.3 DAGs and Posets
3.2.4 Topological Sort and Optimization 
References

Introduction
it is called a directed acyclic graph, or a 

DAG^ While being acyclic may seem to be a stringent condition, it arises quite natu­
rally because vertices often have a natural ordering. For instance, vertices may represent 
^^vents ordered m time or ordered by hierarchy. This ordering makes results and algo­
rithms for DAGs relatively simple. °

3.2.1 Examples and Basic Facts

DEFINITIONS

Dl. A digraph is acyclic if it has no directed cycles.

D2: DAG is an acronym for directed acyclic graph.

D3; a source in a digraph is a vertex of indegree zero.

D4: a sink in a digraph is a vertex of outdegree zero.

D5: a basis of a digraph is a minimal set of vertices such that every other vertex can
be reached from some vertex in this set by a directed path.

EXAMPLES

El: Operations Research. A large project consists of many smaller tasks with a prece­
dence relation some tasks must be completed before certain others can begin. One 
paphical representation of such a project has a vertex for each task and an arc from u 
to V if task u must be completed before u can begin. For instance, in Figure 3.2.1 the 
food must be loaded and the cabin cleaned before passengers are loaded, but lug^ge 
unloading is independent of the timing of cabin activities. This model of a project will 
always be a DAG, because if there were a directed cycle, the project could not be done- 
every task on the cycle would have to be started before every other one on the cycle



Section 3.2 Directed Acyclic Graphs 143

•---------------------
unload luggage luggage

Figure 3.2.1 A digraph of precedence in an airplane stopover.

E2: Sociology and Sociobiology. A business (or army, or society, or ant colony) has a
hierarchical dominance structure. The nodes are the employees (soldiers, citizens, ants) 
and there is an arc from u to u if u dominates v. If the chain of command is unique, 
with a single leader, and if only arcs representing immediate authority are included, 
then the result is a rooted tree, as in Figure 3.2.2. (Also see §3.2.2.)

Figure 3.2.2 A corporate hierarchy.

E3: Computer Software Design. A large program consists of many subprograms, some
of which can invoke others. Let the nodes of D be the subprograms, and let there be 
an arc from u to u if subprogram u can invoke subprogram v. Then this call graph D 
encapsulates all possible ways control can flow within the program. Must Dhe a DAG? 
No, but each directed cycle represents an indirect recursion and serves as a warning 
to the designer to ensure against infinite loops. See Figure 3.2.3, where Proc 2 can 
call itself indirectly. To determine if a digraph is a DAG or not, do a topological sort 
(§3.2.4).

Figure 3.2.3 The call graph of a computer program.

E4: Ecology. A food web is a digraph in which nodes represent species and in which
there is an arc from u to v if species u eats species v. Figure 3.2.4 shows a small food



144 Chapter 3 DIRECTED GRAPHS

web. In general, food webs are acyclic, because animals tend to eat smaller animals or 
animals in some way “lower down” in the “food chain.” The very fact that phrases like 
this are used indicates that there is a hierarchy, and thus no directed cycles.

frog ------- >- spider ------------ grackle

beetle ------------cherry tree

Figure 3.2.4 A small food web.

E5: Genealogy. A “family tree” is a digraph, where the orientation is traditionally
given not by arrows but by the direction down for later generations. Despite the name, a 
family tree is usually not a tree, since people commonly marry distant cousins, knowingly 
or unknowingly. However, it is always a DAG, because if there were a cycle, everyone 
on it would be older than everyone else on the cycle.

E6: State Diagrams. Let the vertices of D be a set of states of some process, and
let the arcs represent possible transitions. For instance, the process might be a board 
game, where the states are the configurations and each arc represents the transition of 
a single move. Then walks through D represent “histories” that the process/game can 
follow. If the game can never return to a previous configuration (e.g., as in tic-tac-toe), 
the state diagram of the game is a DAG.

FACTS

FI: Every DAG has at least one source and at least one sink.

F2: Every DAG has a unique basis, namely, the set of all its sources.

F3: Every subgraph of a DAG is a DAG.

F4: The transitive closure of a DAG is a DAG.

F5: A digraph is a DAG if and only if every walk in it is a path.

F6: A digraph is a DAG if and only if it is possible to order the vertices so that, in the
adjacency matrix, all nonzero entries are above the main diagonal. (Topological sort in 
§3.2.4 finds the ordering.)

F7: The condensation of any digraph is a DAG. Figure 3.2.5 shows a digraph and its
condensation.

Figure 3.2.5 A digraph and its condensation.



Section 3.2 Directed Acyclic Graphs 145

F8: A digraph is a DAG if and only if it is isomorphic to its condensation.

F9: A digraph is strongly connected (unilateral, weakly connected) if and only if its
condensation is strongly connected (unilateral, weakly connected).

FIO: A DAG is never strongly connected, unless it consists of a single vertex.

Fll: A DAG is unilateral if and only if it is a path.

F12: Every undirected graph without self-loops can be given an acyclic orientation,
in fact, usually many. Namely, arbitrarily index the vertices as «i, V2, • • •, «« and direct 
each edge from its lower indexed end to its higher indexed end.

REMARKS

Rl: For more basic information on DAGs, see [Ha94, Ch. 16] and [Ro76, §2.2-3].

R2: Most of the acyclic orientations in Fact 12 are arbitrary and uninteresting, but
occasionally an acyclic orientation is natural. In a tree, it is natural to orient edges 
away from a root; see §3.2.2. In a bipartite graph, it is natural to direct all edges from 
one side to the other. Still, most interesting orientations are already imposed by the 
nature of the problem, and the question is whether they are acyclic.

3.2.2 Rooted Trees
If the underlying graph of a digraph D is a tree, then D is certainly a DAG, because 

it doesn’t even have any undirected cycles. However, the important tree DAGs have 
further restrictions on their edge directions.

For more on rooted trees, see [GrYe99, §3.2].

DEFINITIONS

D6: A directed tree is a digraph whose underlying graph is a tree.

D7: A rooted tree is a directed tree with a distinguished vertex r, called the root,
such that for every other vertex v, the unique path from r to t) is a directed path from 
r to V.

CONVENTION: In drawing a rooted tree with the root marked, the arrows are usually 
omitted because the direction of each arc is always away from the root. In fact, if the 
direction is always down or left-to-right, as in Figure 3.2.6, it is not even necessary to 
indicate the root.

Figure 3.2.6 Two standard ways to draw a rooted tree.



146 Chapter 3 DIRECTED GRAPHS

D8: A rooted tree is also called an out-tree. This alternative name is typically used
when the arc directions are shown explicitly, for instance, when the tree is a spanning 
subgraph of a larger digraph.

D9: An in-tree is an out-tree with all the directions reversed, so that all paths are
directed toward the root.

EXAMPLES
Previous Example 2 is about rooted trees. Here are some others.

E7: Decision trees. Any branching process leads to a rooted tree, where each node is
a decision point, each arc from a node is an allowed decision, and the root is the start. 
For instance, the stages in a game may be represented this way. Figure 3.2.7 shows the 
first two moves in a game of tic-tac-toe, one by each player. Each node is represented 
by the way the board looks just before the decision. If we take into account symmetry, 
the figure is complete through the first two moves.

CONVENTION: In Figure 3.2.7 the two nodes on the bottom level (3rd move) illustrate 
that different nodes in the tree can represent the same state. While the board looks the 
same at these two nodes, the ordered sequence of decisions leading to these nodes are 
different. Thus in a decision tree, each node represents both a state and the complete 
history of how it was achieved. Compare with Example 6, where these nodes would be 
one, and the digraph would not be a tree.

Figure 3.2.7 The first two moves in the tic-tac-toe game tree, 
and a bit of the third level.

E8: Decomposition trees. Any decomposition of an object or structure into finer and
finer parts can be modeled with a rooted tree. Figure 3.2.8 shows an example of sentence 
parsing.



Section 3.2 Directed Acyclic Graphs 147

FACTS

F13; Every directed tree is a DAG.

F14: A digraph is a rooted tree if and only if its underlying graph is connected, exactly
one vertex (the root) has indegree 0, and all others have indegree 1.

DEFINITIONS FOR ROOTED TREES

DIO: The depth or level of a vertex v is its distance from the root, that is, the
number of edges in the unique directed path from the root to v.

Dll: The height of a rooted tree is the greatest depth of a vertex.

D12: If (u, v) is an edge, the u is the parent of v and v is the child of u.

D13: Vertices having the same parent are siblings.

D14: If there is a directed path from vertex u to vertex v, then n is an ancestor of
V and u is a descendant of it.

D15: A leaf is a vertex with outdegree 0 (no children).

D16: An internal vertex is a vertex that is not a leaf.

D17: An m-ary tree is a rooted tree in which every vertex has m or fewer children.

D18: A complete m-ary tree is an m-ary tree in which every internal vertex has
exactly m children and all leaves are at the same level. See Figure 3.2.9.

Figure 3.2.9 Complete and incomplete ternary (3-ary) trees.

D19: A ordered tree is a rooted tree in which the order of the children at each vertex
makes a difference.
D20: A binary tree is an ordered 2-ary tree in which, even when a vertex has only 
one child, it makes a difference whether it is a left child or a right child.



148 Chapter 3 DIRECTED GRAPHS

REMARKS

R3: Trees, rooted trees, ordered trees, and binary trees make finer and finer distinc­
tions, which should only be used if the distinctions are important in the application 
being modeled. For instance, binary trees are used to model computations with binary 
operations, as in 3 x (4/5). Since division is noncommutative (4/5 ^ 5/4), binary trees 
are an appropriate model for such computations.

R4: Figure 3.2.10 shows four graphs. As trees they are all the same (that is, isomor­
phic). However, as rooted trees, Gi = G2 and G3 = G4, so there are two rooted trees. 
There are three ordered trees, as Gi and G2 are still the same, but G3, G4 are different. 
Finally, as binary trees they are all different. In Gi, vertex c is a right child; in G2 it is 
a left child.

b b

A Aa c c a

GI G2 G3 C4

Figure 3.2.10 Four trees: the same and not the same.

FACTS

F15: An m-ary tree has at most m* vertices at level k.

F16: Let T be an n-vertex m-ary tree of height h. Then

/i -|- 1 < n <
m'*+^ - 1 

m — 1

The lower bound is attained if and only if T is a path. The upper bound is attained if 
and only if T is a complete m-ary tree.

Spanning Directed Trees
Since every connected graph has a spanning tree, every digraph has a spanning directed 
tree. In a graph, a spanning tree connects all the vertices, while using the minimum 
number of edges. However, in a digraph, a spanning directed tree may contain few 
directed paths and thus may allow fewer connections than the whole digraph does. So 
the more interesting question is whether a digraph has a spanning rooted tree. This 
question is answered algorithmically by the directed version of depth first search; see 
§10.1 and [GrYe99, §11.1]. It is answered algebraically by the directed matrix tree 
theorems; see §6.4. Here we simply state two key facts.

FACTS

FIT: If digraph D has a spanning tree rooted at v, directed depth first search starting
at V will find one.

F18: For every vertex of a digraph D there is a spanning tree rooted at that vertex if
and only if D is strongly connected.



Section 3.2 Directed Acyciic Graphs 149

Functional Graphs
Closely related structurally to rooted trees, but devised for a different purpose, are 
functional graphs.

DEFINITION
D21; A functional graph is a digraph in which each vertex has outdegree one.

E9: For each function / from a finite domain U to itself, define a digraph D whose
vertex set is U and for which (u, v) is an arc if and only if f{u) = v. By definition of a 
function, there is one such v for every u E [/■ Hence, D is a, functional graph (whence 
the name).
ElO: Specifically, consider the doubling function on the positive integers, but consider
only the effect on the ones digit. This function is completely described by its effect on 
the domain {0,1,..., 9}. Its functional graph is shown in Figure 3.2.11.

6

Figure 3.2.11 The functional graph for doubling (mod 10).

FACT
F19: Let D be a functional graph, and let G be the underlying undirected graph.
Then each component of G contains exactly one cycle. In D this cycle is a directed 
cycle, and the removal of any arc in it turns that component into an in-tree.

3.2.3 DAGs and Posets
There is a very close connection between DAGs and posets. Every DAG repre­

sents a poset, and every poset can be represented by DAGs in several ways. For more 
information, see [Bo90, §7.1-2].

DEFINITIONS
D22: A partial order is a binary relation on a set X that is

• reflexive: for all a: G X, x < x\

• antisymmetric: for all x,y E X, if x ^ y and y ^ x, then x = j/;
• transitive: for all x,y, z E X, if x y and y ^ z, then x ■< z.

EXAMPLES



150 Chapter 3 DIRECTED GRAPHS

D23: A poset, or partially ordered set P = (A, :<) is a pair consisting of a set X,
called the domain, and a partial order on A.

D24: Elements x,y oi P are comparable if either x <y ox y <x.

D25: Element x is less than element y, written x ^ y, if x :< y and x ^ y.

D26: The comparability digraph of the poset P = (A, :<) is the digraph with vertex
set A such that there is an arc from a: to ?/ if and only if x ^ y.

D27: The element y covers the element a; in a poset if a: y and there is no element
z such that x ^ z ^ y.

D28: The cover graph of a poset P = (A, :<) is the graph with vertex set A such
that X, y are adjacent if and only if one of them covers the other.

D29: A Hasse diagram of poset P is a straight-line drawing of the cover graph such
that the lesser element of each adjacent pair is lower in the drawing.

EXAMPLE

Ell: Let A = {2,4,5,8,10,20} and let ■< be the divisibility relation on A. That is
X :< y if and only if y/x is an integer. The comparability digraph and the Hasse diagram 
for P — (A, are as shown in Figure 3.2.12.

20

Figure 3.2.12 Comparability digraph and Hasse diagram for a poset. 

FACTS

F20: If the loops are deleted, the comparability digraph of any poset is a DAG.

F21: Every Hasse diagram is a DAG if one considers all edges to be directed up (or
all down).

F22: Every DAG D represents a poset in the following sense. The domain of P is the
vertex set of D, and x < y if there is a directed path from x to y.

TERMINOLOGY NOTE: In passing from DAG D to poset P, null paths are included, so 
that a; a; for all x. Alternatively, we obtain the poset by taking the transitive closure 
D* of D. Then a; y if and only if (x, y) is an arc of D*.

3.2.4 Topological Sort and Optimization

In a DAG, the vertices can always be numbered consecutively so that all arcs go 
from lower to higher numbers. Using this numbering, many optimization problems can 
be solved by essentially the same algorithm, one that makes a single pass through the



Section 3.2 Directed Acyciic Graphs 151

vertices in numbered order. For more general digraphs, algorithms for these optimization 
problems are less efficient or at least more complicated to describe.

DEFINITIONS

D30: A linear extension ordering of a digraph is a consecutive numbering of the 
vertices as vi, V2,..., v„ so that all arcs go from lower-numbered to higher-numbered 
vertices.

D31: A topological sort, or topsort, is any algorithm that assigns a linear extension
ordering to a digraph when it has one. (This name is traditional, but the relation to 
topology in the sense understood by topologists is obscure.) A simple topological sort 
algorithm is shown as Algorithm 3.2.1. See also [Ro84, §11.6.2].

FACTS

F23: A digraph has a linear extension ordering if and only if it is a DAG.

F24: Topological sort determines if a digraph is a DAG and finds a linear extension 
ordering if it is.

Algorithm 3.2.1: Topological sort

Input: a digraph D.

Output: A linear extension ordering if D is a DAG; failure otherwise 
H :=D]k=l

while Vh ^ <j> {vertex set of H non-empty}
Vk := any vertex in H of indegree zero.

{If no such vertex exists, exit: D is not a DAG}
H := H — Vk {New H is a DAG if old H was} 
k := fc-Fl

REMARK

R.5: Because of the close connection between DAGs and posets, this whole discussion
of linear extensions and topological sort can just as well be stated in the poset context. 
For instance, every poset has a linear extension, which may be found by a topological 
sort. See [GrYe99, pp. 373-376].

Optimization
There are many computational problems about graphs, with important real-world ap­
plications, when the graphs have weights on their vertices and/or edges. For DAGs, 
many of these problems can be solved by essentially the same single-pass algorithm. 
This algorithm is the basic form of the sort of staged algorithm called dynamic pro­

gramming in operations research circles [HiLi95, Ch. 10]. Algorithms 3.2.2 and 3.2.3 
provide templates for two versions of this algorithm. The examples that follow fill in 
the templates by giving specific formulas for updating the functions they compute.
In Algorithm 3.2.2, topsort is done first, and then the function F is computed vertex 
by vertex in topsort order. In Algorithm 3.2.3, the topsort is done simultaneously with 
improving F on vertices not yet sorted.



152 Chapter 3 DIRECTED GRAPHS

Algorithm 3.2.2: Basic Dynamic Programming, First Version

Input: DAG D with vertices numbered vi,V2, ■ ■ ■ ,v„ in topsort order; weights 
w{v) on vertices or w{v, u) on arcs, as needed.

Output : Correct values of desired function F.

Initialize F{v\)

For = 2 to n
Determine F{vk) in terms of weights and F{vi) for i < fc.

Algorithm 3.2.3: Basic Dynamic Programming, Second Version

Input: DAG D with n vertices and weights w{v) on vertices or w{v, u) on arcs, 
as needed.

Output: Correct values of desired function F.

Initialize F{v) for all v.
H :=D 

For A; = 1 to n
Vk ■-= a source in H {exists since J? is a DAG}
Update F{u) for all u for which {vk,u) is an edge in H.

H :=H-Vk

EXAMPLES
For simplicity in the formulas, in all examples below we assume that the DAGs have no 
multiple edges.

v5: 10

E12: Project Scheduling. Consider Figure 3.2.13, which repeats Figure 3.2.1 with the
following additions: Start and Finish vertices, a topsort ordering, and times for the 
tasks as weights on the vertices. Start and Finish, being merely marker vertices, take 
time 0. Recall that (u,v) is an arc if task u must be completed directly before task v 

begins, and that these tasks are the steps necessary to complete an airplane stopover. 
How quickly can the stopover be completed? The bottleneck is the longest path from

J



Section 3.2 Directed Acyciic Graphs 153

Start to Finish, where the length of a (directed) path is the sum of the weights on its 
vertices. Dynamic programming can answer this question as follows. Let

F{u) = the length of the longest path (using vertex weights) from Start to u.

Then in Algorithm 3.2.2 use
Initialization; F{vi) = w{vi) = 0, (Note: v\ = Start)

Update: F{vk) = w{vk) + max{F(vi) \ {vi,Vk) is an arc}.

In Algorithm 3.2.3 use

Initialization: For all v, F{v) = w{v),
Update: For all u such that (ufc, u) is an arc, F{u) = max{T(u), F{vk)+w{u)}.

For either algorithm, at termination the desired answer is F’(Finish), that is, F(u„).
This method of finding the optimal schedule by iteratively finding the longest path is 
the essence of the critical path method, or CPM [HiLi95, Ch. 9]. This example uses the 
activity on node model, or AoN. See Example 13 for the activity on arc model, or AoA.

E13: Project Scheduling, second model. If edges represent subtasks, and tasks earlier
on directed paths must be completed before those later are begun, then the longest path 
from the Start to Finish vertex is the shortest time in which the whole project can be 
completed, where now the length of a path is the sum of the weights on its edges. Let

F{u) = the length of the longest path (using edge weights) from Start to u.

Then in Algorithm 3.2.2 use

Initialization; F(vi) = 0,
Update; F(vk) = max{F(uj) + w{vi,Vk) \ {vi,Vk) is an arc}.

In Algorithm 3.2.3 use
I Initialization: For all v, F{v) = 0,

Update: For all u such that (u*,w) is an arc,
F{u) — max{F(u), F{vk)+w{vk,u)}.

For either algorithm, at termination the desired answer is F(Finish).

E14: Shortest Paths. What is the shortest directed path between two vertices u and
u', where the length of a path is the sum of the weights on its edges? If a graph 
represents a road network, and the weights on the edges are the lengths of the road 
segments (or the travel times, or the toll on that segment), then shortest path means 
the shortest road distance (or least time, or lowest toll). If the graph is a DAG, and 
we make u the Start vertex (by eliminating earlier vertices in the topsort if necessary), 
then dynamic programming finds the shortest path as follows. Let

F{u) = the length of the shortest path (using edge weights) from Start to u.

Then in Algorithm 3.2.2 use

Initialization: F{vi) = 0,
Update: F[vk) = min{F(u,) + tt)(u,-,Vfe) | {v,,Vk) is an arc}.



154 Chapter 3 DIRECTED GRAPHS

In Algorithm 3.2.3 use

Initialization: F{u) = 0, F{v) = oo for v ^ u,
Update: For all v such that {vk, u) is an arc,

F{v) = min{f (u), F{vk)+w{vk,v)}.

For either algorithm, at termination the desired answer is the value of F{u').

E15: What is the shortest directed path between two vertices, where the length of
a path is the sum of the weights on its vertices? Dynamic programming solves this 
problem too for DAGs, with a slight change in the formulas in Example 14 (replace 
edge weights with vertex weights).

E16: Counting Paths. How many directed paths are there between a given pair of
vertices? If the digraph is a DAG, and the vertices are Start and Finish, let

F{u) — the number of directed paths from Start to u.

Then in Algorithm 3.2.2 use

Initialization: F{vi) = 1, (ui = Start)
Update: F{vk) = X]){F'(u,) ] {u,-,Vfc) is an arc}.

In Algorithm 3.2.3 use

Initialization: F(Start) = 1, F{v) = 0 for v ^ Start,
Update: For all v such that (vk, v) is an arc,

F{v) = F{v) + F{vk).

For either algorithm, at termination the desired answer is the value of F(Finish).

El 7: Maximin Paths. What is the directed path between two vertices for which the
minimum edge weight on that path is maximum among all paths between those two 
vertices? This is called the maximin path and that maximum value is called the maximin 

value. In Figure 3.2.14 the maximin path from Vi to Vg is uiU3W4T;6 and the maximin 
value is 4. If the edges represent railroad segments, and each edge weight is the weight 
limit on that railroad segment, then this is the path between the two points over which 
the heaviest load can be shipped.

v2 2

Figure 3.2.14 The maximin path U1U3U4U6 has value 4 and 
the minimax path U1U3U5V6 has value 6.



Section 3.2 Directed Acyciic Graphs 155

If the digraph is a DAG, and the vertices are Start and Finish, let
F{u) = the maximin value for directed paths from from Start to u.

Then in Algorithm 3.2.2 use
Initialization: F{vi) = 0, (di = Start)

Update: F{vk) = max{mm{F{vi),w{vi,Vk)} \ {vi,vk) is an arc}.

In Algorithm 3.2.3 use
Initialization: F(Start) = 0, F(i;) = oo for i; ^ Start,

Update: For all v such that (i)fc,u) is an arc,
F(v) — max{F(i;), min{F(vk),w(vk,v}}}.

For either algorithm, at termination the desired answer is the value of F(Finish).

E18- Minimax Paths. What is the directed path between two vertices for which the 
maximum edge weight on the path is minimum? This minimax question is relevant if 
the graph represents a pipeline network, and each edge weight is the maximum elevation 
on that segment, because the work necessary to push a fluid through a pipeline route 
is related to the maximum height to which the fluid must be raised along the way. In 
Figure 3.2.14 the minimax path from ui to ve is V1V3V5V6 and the minimax value is 6. 
Dynamic programming solutions to the minimax problem are found by interchanging 
the roles of min and max in the algorithms for Example 17. Also, in Algorithm 3.2.3, 
all F(v) are initialized to 0.

FACTS
F25- Algorithms 3.2.2-3 each solve critical path problems and many other optimiza­
tion and computation problems on DAGs. (See the examples above.)
F26: In project scheduling problems modeled by DAGs, the minimum completion time
is the length of the longest path from the Start node to the Finish node.
F27: Any DAG may be augmented to have just one source and one sink (just create
a new node named Start ad^cent to all existing sources, and a new node named Finish 
adjacent from all existing sinks).

References
[Bo90] K. Bogart, Introductory Combinatorics, Harcourt Brace Jovanovich, 1990.

[GrYe99] J. L. Gross and J. Yellen, Graph Theory and Its Applications, CRC Press, 

1999.
[Ha94] F. Harary, Graph Theory, Perseus, 1994 (reprint of original edition, Addison 

Wesley, 1969).
[HiLi95] F. Hillier and G. Lieberman, Introduction to Operations Research, Sixth Edi­

tion, McGraw-Hill, 1995.

[Ro76] F. Roberts, Discrete Mathematical Models, Prentice-Hall, 1976.

[Ro84] F. Roberts, Applied Combinatorics, Prentice-Hall, 1985.


	Directed Acyclic Graphs
	Recommended Citation

	Scanned using Book ScanCenter 5033

