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Dependent Random Graphs and Multi-Party
Pointer Jumping∗

Joshua Brody and Mario Sanchez

Swarthmore College
Swarthmore, PA USA
joshua.e.brody@gmail.com, msanche1@cs.swarthmore.edu

Abstract
We initiate a study of a relaxed version of the standard Erdős-Rényi random graph model, where
each edge may depend on a few other edges. We call such graphs dependent random graphs.
Our main result in this direction is a thorough understanding of the clique number of dependent
random graphs. We also obtain bounds for the chromatic number. Surprisingly, many of the
standard properties of random graphs also hold in this relaxed setting. We show that with
high probability, a dependent random graph will contain a clique of size p1´op1qq logpnq

logp1{pq , and the
chromatic number will be at most n logp1{p1´pqq

log n . We expect these results to be of independent
interest. As an application and second main result, we give a new communication protocol for
the k-player Multi-Party Pointer Jumping (mpjk) problem in the number-on-the-forehead (NOF)
model. Multi-Party Pointer Jumping is one of the canonical NOF communication problems, yet
even for three players, its communication complexity is not well understood. Our protocol for
mpj3 costs Opnplog lognq{ lognq communication, improving on a bound from [9]. We extend our
protocol to the non-Boolean pointer jumping problem ympjk, achieving an upper bound which is
opnq for any k ě 4 players. This is the first opnq protocol for ympjk and improves on a bound of
Damm, Jukna, and Sgall [12], which has stood for almost twenty years.

1998 ACM Subject Classification F.1.3 Modes of Computation

Keywords and phrases random graphs, communication complexity, number-on-the-forehead
model, pointer jumping

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2015.606

1 Introduction

Random Graphs

The study of random graphs revolves around understanding the following distribution
on graphs: Given n and p, define a distribution Gpn, pq on n vertex graphs G “ pV,Eq

by placing each edge pi, jq P E independently with probability p. The first paper on
this topic, authored by Erdős and Rényi [14], focused on connectivity of graphs. Later,
Bollobás and Erdős [7] found the interesting result that almost every graph has a clique number
of either r or r`1, for some r « 2 log n

log 1{p . This remarkable concentration of measure result led to
further investigations of these graphs. Then, Bollobás [5] solved the question of the chromatic
number and showed that almost every graph has chromatic number p1 ` op1qq´n log p1´pq

2 log n .
For more details, consult Bollobás [6] and Alon and Spencer [2].
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We extend this model by allowing each edge to depend on up to d other edges. We make
no a priori assumptions on how the edges depend on each other except that edges must be
independent of all but at most d other edges. This defines a family of graph distributions
Gdpn, pq. We initiate a study of dependent random graphs by considering the clique number
and the chromatic number. As far as we know, this is the first work to systematically study
such distributions. However, other relaxations of the standard random graph model have been
studied. The most relevant for us is that of Alon and Nussboim [1], who study random graphs
where edges are k-wise independent. Alon and Nussboim give tight bounds for several graph
properties, including the clique number, the chromatic number, connectivity, and thresholds
for the appearance of subgraphs. The bounds for k-wise independent graph properties are not
as tight as the standard random graphs, but this is to be expected since k-wise independent
random graphs are a family of distributions rather than a single distribution. Our dependent
random graphs similarly represent a family of graph distributions. However, dependent
random graphs are generally not even almost k-wise independent, even for small values of d.

NOF Communication Complexity

As an application of our dependent random graphs, we study multi-party communication
problems in the Number-On-The-Forehead (NOF) communication model defined by Chandra
et al. [11]. In this model, there are k players plr1, ¨ ¨ ¨ ,plrk who wish to compute some
function fpx1, . . . , xkq of their inputs using the minimal communication possible. Initially,
players share a great deal of information: each plri sees every input except xi.1 Note
that a great deal of information is shared before communication begins; namely, all players
except plri see xi. As a result, for many functions little communication is needed. Precisely
how this shared information affects how much communication is needed is not currently
well understood, even when limiting how players may communicate. We consider two well-
studied models of communication. In the one-way communication model, players each send
exactly one message in order (i.e., first plr1 sends his message, then plr2, etc.) In the
simultaneous-message (or SM) model, each player simultaneously sends a single message to
a referee, who processes the messages and outputs an answer. We use Dpfq and D‖pfq to
denote the communication complexity of f in the one-way and simultaneous-message models
respectively.

To date, no explicit function is known which requires a polynomial amount of communi-
cation for k “ Θppolylognq players in the SM model. Identifying such a function represents
one of the biggest problems in communication complexity. Furthermore, a chain of results
[22, 16, 4] showed that such a lower bound would place f outside of the complexity class
ACC0. ACC0 lies at the frontier of our current understanding of circuit complexity, and until
the recent work of Williams [21] it wasn’t even known that NEXP Ę ACC0. The Multi-Party
Pointer Jumping problem is widely conjectured to require enough communication to place it
outside of ACC0. This motivates our study.

The Pointer Jumping Problem

There are many variants of the pointer jumping problem. Here, we study two: a Boolean
version mpjn

k , and a non-Boolean version ympjn
k . (From now on, we suppress the n to ease

notation). We shall formally define these problems in Section 2, but for now, each may

1 Imagine xi being written on plri’s forehead. Then, plri sees inputs on other players’ foreheads, but
not his own.

APPROX/RANDOM’15



608 Dependent Random Graphs and Multi-Party Pointer Jumping

be described as problems on a directed graph that has k ` 1 layers of vertices L0, . . . , Lk.
The first layer L0 contains a single vertex s0, and layers L1, . . . , Lk´1 contain n vertices
each. In the Boolean version, Lk contains two vertices, while in the non-Boolean version Lk

contains n vertices. For inputs, each vertex in each layer except Lk has a single directed
edge pointing to some vertex in the next layer. The output is the the unique vertex in Lk

reachable from s0; i.e., the vertex reached by starting at s0 and “following the pointers” to
the kth layer. Note that the output is a single bit for mpjk and a logn-bit string for ympjk.
To make this into a communication game, we place on plri’s forehead all edges from vertices
in Li´1 to vertices in Li. If players speak in any order except plr1, ¨ ¨ ¨ ,plrk, there is an
easy Oplognq-bit protocol for mpjk.

This problem was first studied by Wigderson,2 who gave an Ωp
?
nq lower bound for

mpj3. This was later extended by Viola and Wigderson [20], who showed that mpjk requires
Ω̃pn1{pk´1qq communication, even under randomized communication. On the upper-bounds
side, Pudlak et al. [19] showed a protocol for mpj3 that uses only O pnplog lognq{ lognq
communication, but only works when the input on plr2’s forehead is a permutation. Damm
et al. [12] show that Dpympj3q “ Opn log lognq and Dpympjkq “ Opn logpk´1q nq, where
logprq n is the rth iterated log of n. Building on [19], Brody and Chakrabarti [9] showed
Dpmpj3q “ O

´

n
a

plog lognq{ logn
¯

; they give marginal improvements for mpjk for k ą 3.
Several works [19, 12, 15, 10, 9, 8] have shown strong lower bounds for certain restricted
classes of protocols motivated by the above upper bounds. Despite the attention devoted
to this problem, the upper and lower bounds for general protocols remain far apart, even
for k “ 3 players, where Dpmpj3q “ Ωp

?
nq and Dpmpj3q “ Opn

a

plog lognq{ lognq. For
this reason, in this work we focus on mpjk and ympjk for small values of k. We strongly
believe that fully understanding the communication complexity of mpj3 will shed light on
the general problem as well.

1.1 Our Results
We give two collections of results: one for dependent random graphs, and the other for the
communication complexity of mpjk and ympjk. For our work on dependent random graphs,
we focus on the clique number and on the chromatic number. The clique number of a graph
G, denoted cliquepGq, is the size of the largest clique; the chromatic number χpGq is the
number of colors needed to color the vertices such that the endpoints of each edge have
different colors. We use cliquepGdpn, pqq and χpGdpn, pqq to refer to cliquepGq and χpGq for
some G „ Gdpn, pq. We achieve upper and lower bounds for each graph property. Say that a
graph property P holds almost surely (a.s.) if it holds with probability approaching 1 as
n approaches 8 i.e. if P holds with probability 1´ op1q.

Our strongest results3 give a lower bound for cliquepGdpn, pqq and an upper bound for
χpGdpn, pqq.

I Theorem 1. If 0 ă p ă 1{4 and d{p ăă
?
n, then Gdpn, pq almost surely has a clique of

size Ω
´

log n
log 1{p

¯

.

I Theorem 2. If 3{4 ă p ă 1 and d “ nop1q then almost surely χpGdpn, pqq ď p1 `
εq´n logp1´pq

log n .

2 This was unpublished, but an exposition appears in [3].
3 Our choice of p is motivated by what was needed to obtain the communication complexity bounds for

mpjk. We suspect that tweaking our technical lemmas will give bounds for any constant p.
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These bounds nearly match similar results for Erdős-Rényi random graphs. Our bounds on
the other side are not as tight.

I Theorem 3. If 0 ă p ă 1 and d ď n{ log2 n, then almost surely cliquepGdpn, pqq ď d logn.

I Theorem 4. If 0 ă p ă 1 and d ď n{ log2 n, then almost surely χpGdpn, pqq ě n{pd lognq.

For large values of d, there are wide gaps in the upper and lower bounds of clique number
and chromatic number. Are these gaps necessary? The existing bounds for random graphs
show that Theorems 1 and 2 are close to optimal. Our next result witnesses the tightness for
cliquepGdpn, pqq.

I Lemma 5. For any d “ opnq and any 0 ă p ă 1
1. there are d-dependent random graphs that almost surely contain cliques of size Ωpdq.
2. there are d-dependent random graphs that almost surely contain cliques of size Ωp

?
d lognq.

This result shows that Theorem 3 is also close to optimal. It also demonstrates that tight
concentration of measure does not generally hold for dependent random graphs, even for
small values of d. Nevertheless, we expect that for many specific dependent random graphs,
tight concentration of measure results will hold. Finally, we give two simple constructions
which show that with too much dependence, very little can be said about cliquepGdpn, pqq.

I Lemma 6. For any d ě 2n, the following statements hold.
1. For any 0 ă p ă 1, there exists a d-dependent random graph Gdpn, pq that is bipartite

with certainty.
2. For any 1{2 ď p ă 1, there exists a d-dependent random graph Gdpn, pq that contains a

clique of size n{2 with certainty.

Results for Multi-Party Pointer Jumping

Our main NOF communication complexity result is a new protocol for mpj3.

I Theorem 7. Dpmpj3q “ Opnplog lognq{ lognq.

This is the first improvement in the communication complexity of mpj since the work of
Brody and Chakrabarti [9]. Next, we use this protocol to get new bounds for the non-Boolean
version.

I Theorem 8. Dpympj4q “ O
´

n plog log nq2

log n

¯

.

Our protocol for ympj4 is the first sublinear-cost protocol for ympjk for any value of k and
improves on the protocol of Damm et al. [12] which has stood for nearly twenty years.4 Our
last pointer jumping results give upper bounds in the SM setting. First we show how to
convert our protocol from Theorem 7 to a simultaneous messages protocol.

I Lemma 9. D‖pmpj3q “ O
´

n log log n
log n

¯

.

4 The ympjk protocol of Damm et al uses Opn log log ¨ ¨ ¨ lognq communication, with k´ 1 logs and is quite
simple. It works by having players send an increasing number of bits of information about each possible
pointer; their main result is a strong lower bound for conservative protocols, in which each player i has
access only to f1 ˝ ¨ ¨ ¨ ˝ fi´1 instead of f1, . . . , fi´1. It is worth noting that their protocol is conservative.
Our protocols are not conservative.

APPROX/RANDOM’15



610 Dependent Random Graphs and Multi-Party Pointer Jumping

Note that to solve ympj3, players can compute each bit of f3pf2piqq using an mpj3 protocol.
By running logn instances in parallel, players compute all of ympj3pi, f2, f3q. Thus, we get
the following bound for ympj3.

I Corollary 10. D‖pympj3q “ Opn log lognq.

This matches the bound from [12] but holds in the more restrictive SM setting.

1.2 Obtaining Bounds for Dependent Random Graph Properties
In this subsection, we describe the technical hook we obtained to prove our bounds for
Theorems 1 and 2. A key piece of intuition is that when looking at only small subgraphs
of G „ Gdpn, pq, the subgraph usually looks like Gpn, pq. This intuition is formalized in the
following definition and lemma.

I Definition 11. Given a dependent random graph Gdpn, pq, call a subset of vertices S Ď V

uncorrelated if any two edges in the subgraph induced by S are independent.

I Lemma 12. Suppose d and k are integers such that dk3 ď n. Fix any d-dependent graph
Gdpn, pq, and let S be a set of k vertices uniformly chosen from V . Then, we have

PrrS is uncorrelateds ě 1´ 3dk3

2n .

At first glance, it might appear like we are now able to appeal to the existing arguments
for obtaining bounds for cliquepGpn, pqq and then χpGpn, pqq. Unfortunately, this is not the
case – while most potential k-cliques are uncorrelated, allowing correlation between edges
drives up the variance. In effect, we might expect to have roughly the same number of
k-cliques, but these cliques bunch together. Nevertheless, we are able to show that when d is
small enough, these cliques don’t bunch up too much. Appropriately bounding the variance
is the most technically involved hurdle in this work, and is necessary to obtain both the
upper bound on the chromatic number, and the efficient pointer jumping protocol. We leave
details to Section 5.

1.3 Road Map
The rest of the paper is organized as follows. In Section 2 we specify some notation, give
formal definitions for the problems and models we consider, and provide some technical
lemmas on probability which we’ll need in later sections. We develop our results for dependent
random graphs in Section 3, deferring some technical lemmas to Section 5. We present our
main result for mpj3 in Section 4, deferring the secondary mpjk results to Section 7. In
Section 6 we prove Lemmas 5 and 6.

2 Preliminaries and Notation

We use rns to denote the set t1, . . . , nu, N to denote
`

n
2
˘

, and exppzq to denote ez. For
a string x P t0, 1un, let xrjs denote the jth bit of x. For a sequence of random variables
X0, X1, . . ., we use Xi to denote the subsequence X0, . . . , Xi. For a graph G “ pV,Eq, Ḡ
denotes the complement of G. Given sets A Ă B Ă V , we use BzA to denote the set of edges
tpu, vq : u, v P B and tu, vu Ę Au.

For a communication problem, we refer to players as plr1, . . . ,plrk. When k “ 3, we
anthropomorphize players as Alice, Bob, and Carol. Our communication complexity measures
were defined in Section 1; for an in-depth development of communication complexity, consult
the excellent standard textbook of Kushilevitz and Nisan [18].
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2.1 Probability Theory and Random Graphs
Next, we formalize our notion of dependent random graphs and describe the tools we use to
bound cliquepGdpn, pqq.

I Definition 13 ([13], Definition 5.3). A sequence of random variables Y0, Y1, . . . , Yn is a
martingale with respect to another sequence X0, X1, . . . , Xn if for all i ě 0 we have

Yi “ gipXiq

for some functions tgiu and, for all i ě 1 we have

ErYi|Xi´1s “ Yi´1 .

I Theorem 14 (Azuma’s Inequality). Let Y0, . . . , Yn be a martingale with respect to X0, . . . , Xn

such that ai ď Yi ´ Yi´1 ď bi for all i ě 1. Then

PrrYn ą Y0 ` ts,PrrYn ă Y0 ´ ts ď exp
ˆ

´
2t2

ř

ipbi ´ aiq
2

˙

.

Of particular relevance for our work is the edge-exposure martingale. Let G be a random
graph. Arbitrarily order possible edges of the graph e1, . . . , eN , and let Xi be the indicator
variable for the event that ei P G. Let f :

`

n
2
˘

Ñ R be any function on the edge set, and
let Yi :“ ErfpX1, . . . , XN q|Xis. It is easy to verify that for any f , ErYi|Xăis “ Yi´1, and
therefore tYiu are a martingale with respect to tXiu. We say that tYiu is the edge-exposure
martingale for G.

It is worth noting that martingales make no assumptions about the independence of
tXiu. We’ll use martingales on graph distributions where each edges may depend on a small
number of other edges. This notion of local dependency is formalized below.

A dependency graph for a set of random variables X “ tX1, . . . , XNu is a graph H on
rN s such that for all i, Xi is independent of tXj : pi, jq R Hu. We say that a set of variables
X is d-locally dependent if there exists a dependency graph for X where each vertex has
degree at most d.

The following lemma of Janson [17] (rephrased in our notation) bounds the probability
that the sum of a series of random bits deviates far from its expected value, when the random
bits have limited dependence.

I Lemma 15 ([17]). Let X “ tXiuiPrNs be a d-locally dependent set of identically distributed
binary variables, and let Y “

ř

iPrNsXi. Then, for any t we have

Prr|Y ´ ErY s| ě ts ď e
´2t2
pd`1qN .

For more details and results on probability and concentration of measure, consult the
textbook of Dubhashi and Panconesi [13].

I Definition 16. A distribution Gdpn, pq is d-dependent if each edge is placed in the graph
with probability p, and furthermore that the set of edges are d-locally dependent.

Note that taking d “ 0 gives the standard Erdős-Rényi graph model. As with k-wise
independent random graphs, d-dependent random graphs are actually a family of graph
distributions. We make no assumptions on the underlying distribution beyond the fact that
each edge depends on at most d other edges. We abuse notation somewhat and let Gdpn, pq

denote both the family of d-dependent random graph distributions as well as an arbitrary

APPROX/RANDOM’15



612 Dependent Random Graphs and Multi-Party Pointer Jumping

d-dependent random graph distribution. Unless specified otherwise (by stating e.g. “there
exists a d-dependent random graph distribution. . . ”) all of our results apply to an arbitrary
d-dependent random graph distribution. Following convention in the random graph literature,
we use “a depedent random graph” to denote a random variable distributed according to a
d-dependent random graph distribution.

A clique in a graph G “ pV,Eq is a set of vertices S such that the subgraph induced on
S is complete. Similarly, an independent set T is a set of vertices whose induced subgraph is
empty. A clique cover of G is a partition of V into cliques. We let cliquepGq denote the size
of the largest clique in G. Let χpGq denote the chromatic number of G; i.e., the minimum
number of colors needed to color the vertex set such that no two adjacent vertices are colored
the same. Note that χpGq is the size of the smallest clique cover of Ḡ.

2.2 Multi-Party Pointer Jumping
Finally, we formally define the Boolean Multi-Party Pointer Jumping function. Let i P rns,
and let f2, . . . , fk : rnsn, be functions from rns to rns. Let x P t0, 1un. We define the k-player
pointer jumping function mpjn

k : rns ˆ prnsnqk´2
ˆ t0, 1un recursively as follows:

mpjn
3 pi, f2, xq :“ xrf2piqs ,

mpjn
k pi, f2, . . . , fk´1, xq :“ mpjn

k´1pf2piq, f3, . . . , fk´1, xq .

The non-Boolean version ympjn
k : rns ˆ prnsnqk´1 is defined similarly recursively:

ympjn
3 pi, f2, f3q :“ f3pf2piqq ,

ympjn
k pi, f2, . . . , fkq :“ ympjn

k´1pf2piq, f3, . . . , fkq .

Henceforth, we drop the superscript n to ease notation. Each problem is turned into a
communication game in the natural way. plr1 is given i; for each 2 ď j ă k, plrj receives
fj , and plrk receives x. Players must communicate to output mpjkpi, f2, . . . , fk´1, xq.

3 Dependent Random Graphs

In this section, we prove our main results regarding dependent random graphs, namely that
with high probability they contain a large clique, and with high probability the chromatic
number is not too large. The two theorems are formally stated below.

I Theorem 17 (Formal Restatement of Theorem 1). For all 0 ă ε ă 1{4 there exists n0 such
that

PrrcliquepGdpn, pqq ą ks ą 1´ expp´n1`εq ,

for all n ě n0, for all n´ε{4 ă p ă 1
4 and for all d, k such that k ď logpn{p2d log3 nqq

logp1{pq and
d{p ď n1{2´ε.

This theorem shows cliquepGdpn, pqq “ Ω
´

log n
log 1{p

¯

with high probability, as long as d{p is
bounded away from

?
n. Furthermore, when d “ nop1q, cliquepGdpn, pqq ě p1 ´ εq log n

logp1{pq
with high probability.

Proof. This proof follows the classic technique of Bollobás [5], modified to handle dependent
random graphs. We need to show that Gdpn, pq contains clique of size k. To that end, let
Y be the largest number of edge-disjoint uncorrelated k-cliques. First, we give a lower
bound on ErY s; we defer its proof to Section 5.
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I Lemma 18. ErY s ě n2p
19k5 .

Now, we use the edge-exposure martingale on Gdpn, pq to show that with high probability, Y
does not stray far from its expectation. Let Y0, Y1, ¨ ¨ ¨YN , be the edge exposure martingale
on Gdpn, pq. Recall that Y0 “ ErY s, YN “ Y , and Yi “ ErY |Xis. In a standard random
graph model where all edges are independently placed in G, it is easy to see that conditioning
on whether or not an edge is in the graph changes the expected number of edge-disjoint
uncorrelated k-cliques by at most one. This no longer holds when edges are dependent.
However, if the graph distribution is d-dependent, then conditioning on Xi changes the
expected number of edge-disjoint uncorrelated k-cliques by at most d. Therefore, |Yi`1 ´

Yi| ď d. Then, by Azuma’s inequality, Lemma 18, and our assumption that d{p ď n1{2´ε,
we have

PrrY “ 0s ď PrrY ´ ErY s ď ´ErY ss

ď exp
ˆ

´ErY s2

2Nd2

˙

“ exp
ˆ

´
n2p2

192d2k10 p1` op1qq
˙

ď expp´n1`εq .

Thus, it follows that Gdpn, pq contains an uncorrelated k-clique with probability at least
1´ expp´n1`εq. Since every uncorrelated clique is still a clique, it is clear that

PrrcliquepGdpn, pqq ě ks ě 1´ expp´n1`εq .

J

Next, we use the lower bound on cliquepGdpn, pqq to obtain an upper bound on χpGdpn, pqq.

I Theorem 19. For all 0 ă ε ă 1{8 there exists n0 such that

Pr
„

χpGdpn, qqq ă p1` 4εq´n logp1´ qq
logn



ą 1´ exppn1`εq ,

for all 3{4 ă q ă 1´ n´ε{4, all d ď nop1q, and all n ě n0.

Proof. This follows a greedy coloring approach similar to [5, 19], but adapted to dependent
random graphs. Set m “ n

log2 n
, ε1 “ 2ε, and p “ 1 ´ q. Let E be the event that every

induced subgraph H of Gdpn, qq with m vertices has an independent set of size at least
k :“ p1´ ε1q log m

´ logp1´qq . Independent sets in Gdpn, qq correspond to cliques in the complement
graph Gdpn, qq, which is distributed identically to Gdpn, pq. Thus, we’re able to leverage
Theorem 17 to bound PrrEs. In particular, since d ď nop1q ď mop1q,5 by Theorem 17 and a
union bound we have

PrrEs ą 1´
ˆ

n

m

˙

expp´n1`ε1q ą 1´ exp
ˆ

n

logn ´ n
1`ε1

˙

ą 1´ expp´n1`εq .

Now, assume E holds. We iteratively construct a coloring for Gdpn, qq. Start with each vertex
uncolored. Repeat the following process as long as more than m uncolored vertices remain:

5 note that nδ “ mδ1 , where δ1 “ δ logn
logn´2 log logn . If δ “ op1q then δ1 “ op1q as well.

APPROX/RANDOM’15



614 Dependent Random Graphs and Multi-Party Pointer Jumping

Select m uncolored vertices. From their induced subgraph, identify an independent set I of
size at least k. Then, color each vertex in I using a new color. When at most m uncolored
vertices remain, color each remaining vertex using a different color. Since two vertices share
the same color only if they are in an independent set, it’s clear this is a valid coloring. More
over, for each color in the first phase, we color at least k ą p1´ ε1q log m

´ log p ą p1´p3{2qεq
log n
´ log p

vertices. Hence, the overall number of colors used is at most

n´m

p1´ p3{2qε1qplognq{p´ logp1´ qqq `m ď p1` 4εq´n logp1´ qq
logn .

Therefore, χpGdpn, qqq ď p1`4εq´n logp1´qq
log n as long as E holds. This completes the proof. J

Finally, we give an upper bound on cliquepGdpn, pqq and a lower bound on χpGdpn, pqq,
which follow directly from Lemma 15.

I Theorem 20. For all 0 ă p ă 1 and d ď n{ log2 n, almost surely cliquepGdpn, pqq “

Opd lognq.

Proof. Let G „ Gdpn, pq, and fix some constant c to be determined later. For a set of
vertices S Ď V of size |S| “ cd logn, let BADS denote the event that S is a clique, and let
BAD :“

Ž

S BADS . Note that there are
`

n
cd log n

˘

ď exppcd log2 nq such events. Since G is
d-dependent and S Ă V , then the subgraph induced by S is also d-dependent. Now, define
z :“

`

cd log n
2

˘

and let X1, . . . , Xz be indicator variables for the edges in the subgraph induced
by S. Finally, let Y :“

ř

i Xi. Then, ErY s “ pz, and BADS amounts to having Y “ z. By
Lemma 15,

PrrBADSs “ PrrY “ zs

“ PrrY ´ ErY s ě zp1´ pqs

ď exp
ˆ

´
2z2p1´ pq2

pd` 1qz

˙

“ exp
ˆ

´
2zp1´ pq2

d` 1

˙

.

Choosing c “ 1{p1´ pq2 and using a union bound yields

PrrBADs ď
ˆ

n

z

˙

PrrBADSs ď exp
ˆ

cd log2 n´
2p1´ pq2

d` 1 pcd lognq2
˙

“ exp
`

cd log2 np1´ 2cp1´ pq2q
˘

ă expp´Ωpd log2 nqq .

Thus, almost surely Gdpn, pq has no clique of size ě cd logn. J

Our lower bound on χpGdpn, pqq follows as a direct corollary, since any independent set in
Gdpn, pq is a clique in the complement graph ĞGdpn, pq, which is also d-dependent.

I Corollary 21. If 0 ă p ă 1 and d ď n{ log2 n, then almost surely χpGdpn, pqq ě n{pd lognq.

4 A New Protocol for MPJ3

Below, we describe a family of mpj3 protocols tPHu parameterized by a bipartite graph
H “ pAYB,Eq with |A| “ |B| “ n. In each protocol PH , Alice and Bob each independently
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send a single message to Carol, who must take the messages and the input she sees and
output mpj3pi, f, xq. Bob’s communication in each protocol is simple: given i, he sends xj for
each j such that pi, jq P H. Alice’s message is more involved. Given H and f , she partitions
rns into clusters. For each cluster in the partition, she sends the xor of the bits for x. (e.g.
if one cluster is t1, 3, 5u, then Alice would send xr1s ‘ xr3s ‘ xr5s) This partition of rns into
clusters is carefully chosen and depends on H and f . Crucially, it is possible to make this
partition so that for any inputs i, f , Bob sends xrjs for each j in the cluster containing
fpiq, except for possibly xrfpiqs itself. We formalize this clustering below. Thus, Carol can
compute xrfpiqs by taking the relevant cluster from Alice’s message and “xor-ing out” the
irrelevant bits using portions of Bob’s message.

Each protocol PH will correctly compute mpj3pi, f, xq; we then use the probabilistic
method to show that there exists a graph H such that PH is efficient. At the heart of this
probabilistic analysis is a bound on the chromatic number of a dependent random graph.
For functions with large preimages, this dependency becomes too great to handle.

I Definition 22. A function f : rns Ñ rns is d-limited if |f´1pjq| ď d for all j P rns.

We end up with a protocol PH that is efficient for all inputs pi, f, xq as long as f is
d-limited (d « logn suffices); later, we generalize PH to work for all inputs.
I Remark. This construction is inspired by the construction of Pudlák et al. [19], who gave
a protocol for mpj3 that works in the special case that the middle layer is a permutation π

instead of a general function f . They also use the probabilistic method to show that one PH

must be efficient. The probabilistic method argument in our case depends on the chromatic
number of a dependent random graph; the analysis of the permutation-based protocol in [19]
relied on the chromatic number of the standard random graph Gpn, pq.

Description of PH

Let H “ pA Y B,Eq be a bipartite graph with |A| “ |B| “ n. Given H and f , define a
graph Gf,H by placing pi, jq P Gf,H if and only if both pi, fpjqq and pj, fpiqq are in H. Let
C1, . . . , Ck be a clique cover of Gf,H , and for each 1 ď ` ď k, let S` :“ tfpjq : j P C`u.

The protocol PH proceeds as follows. Given f and x, Alice constructs Gf,H . For each
clique C`, Alice sends b` :“

À

jPS`
xrjs. Bob, given i and x, sends xrjs for all pi, jq P H.

We claim these messages enable Carol to recover mpj3pi, f, xq. Indeed, given i and f , Carol
computes Gf,H . Let C be the clique in the clique cover of Gf,H containing i, and let
S :“ tfpjq : j P Cu and b :“

À

jPS xrjs. Note that Alice sends b. Also note that for any
j ‰ i P C, there is an edge pi, jq P Gf,H . By construction, this means that pi, fpjqq P H,
so Bob sends xrfpjqs. Thus, Carol computes xrfpiqs by taking b (which Alice sends) and
“XOR-ing out” xrfpjqs for any j ‰ i P C. In this way, PH computes mpj3.

While PH computes mpj3, it might not do so in a communication-efficient manner. The
following lemma shows that there is an efficient protocol whenever f has small preimages.

I Lemma 23. For any d ď nop1q, there exists a bipartite graph H such that for all i P rns, x P
t0, 1un, and all d-limited functions f , we have

costpPHq “ O

ˆ

n
log logn

logn

˙

.

Before proving Lemma 23, let us see how this gives the general upper bound.

I Theorem 24 (Restatement of Theorem 7). Dpmpj3q “ Opnplog lognq{ lognq.

APPROX/RANDOM’15
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Proof. Fix d “ logn and let PH be the protocol guaranteed by Lemma 23. We construct a
general protocol P for mpj3 as follows. Given f , Alice and Carol select a d-limited function
g such that gpjq “ fpjq for all j such that |f´1pfpjqq| ď d. Note that Alice and Carol can do
this without communication, by selecting (say) the lexicographically least such g. On input
pi, f, xq, Alice sends the message she would have sent in PH on input pi, g, xq, along with
xrjs for all j with large preimages. Bob merely sends the message he would have sent in PH .
If the preimage of fpiq is large, then Carol recovers xrfpiqs directly from the second part of
Alice’s message. Otherwise, Carol computes mpj3pi, g, xq using PH . Since fpiq has a small
preimage, we know that xrgpiqs “ xrfpiqs “ mpj3pi, f, xq, so in either case Carol recovers
mpj3pi, f, xq.

The communication cost of P is the cost of PH , plus one bit for each j with preimage
|f´1pjq| ą d. There are at most n{d such j. With d “ logn and using Lemma 23, the cost
of P is

costpPq ď costpPHq`n{d “ Opnplog lognq{ lognq`Opn{ lognq “ Opnplog lognq{ lognq .J

Proof of Lemma 23. We use the Probabilistic Method. Place each edge in H independently
with probability p “ Θ

´

log log n
log n

¯

. Now, for any d-limited function f , consider the graph
Gf,H . Each edge pi, jq is in Gf,H with probability p2, but the edges are not independent.
However, we claim that if f is d-limited, then Gf,H is (2d´ 2)-dependent. To see this, note
that pi, jq is in Gf,H if both pi, fpjqq and pj, fpiqq are in H. Therefore, pi, jq is dependent
on (i) any edge pi, j1q such that fpj1q “ fpjq, and (ii) any edge pi1, jq such that fpiq “ fpi1q.
Since f is d-limited, there are at most d ´ 1 choices each for i1 and j1. Thus, each edge
depends on at most 2d´ 2 other edges, and Gf,H is p2d´ 2q-dependent.

In PH , Alice sends one bit per clique in the clique cover of Gf,H . Bob sends one bit
for each neighbor of i in H. Thus, we’d like a graph H such that every i P rns has a few
neighbors and every d-limited function f has a small clique cover.

Let BADi denote the event that i has more than 2pn neighbors in H. By a standard
Chernoff bound argument, PrrBADis ď expp´np2{2q. Next, let BADf be the event that at
least p1`εq´n logpp2

q

log n cliques are needed to cover the vertices in Gf,H . Note that any clique in
Gf,H is an independent set in the complement graph ĘGf,H , so the clique cover number of Gf,H

equals the chromatic number of ĘGf,H . Also note that ĘGf,H is itself a d-dependent random
graph, with edge probability q “ 1´p2. Therefore, by Theorem 19, PrrBADf s ă expp´n1`εq.
Finally, let BAD :“ p

Ž

i BADiq
Ž

´

Ž

d-limited f BADf

¯

. There are n indices i and at
most nn ď exppn lognq d-limited functions f . Therefore, by a union bound we have

PrrBADs ă nPrrBADis ` n
n PrrBADf s ă ne´

np2
2 ` nne´n1`ε

ă 1.

Therefore, there exists a good H. Also note that in PH for a good H, Alice and Bob each
communicate Opn log log n

log n q bits. This completes the proof. J

Simultaneous Messages

We conclude this section by showing how to convert PH into an SM protocol. Observe that
Carol selects a bit from Alice’s message (namely, the clique containing fpiq) and a few bits
from Bob’s message (the neighbors of i in H) and xors them together. To convert PH to an
SM protocol, Alice and Bob send the same messages as in PH . Carol, given i and f , sends a
bit mask describing which bit from Alice’s message and which bits from Bob’s message are
relevant. The Referee then xors these bits together, again producing mpj3pi, f, xq. Carol
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sends one bit for each bit of communication sent by Alice and Bob. Thus, this SM protocol
costs twice as much as the cost of PH . We get the following result.

I Lemma 25 (Restatement of Lemma 9). D‖pmpj3q “ Opn log log n
log n q.

5 Proofs of Main Technical Lemmas

In this section, we state and prove three technical lemmas which form key insights to our
contribution. The first lemma states that most sets of k vertices “look independent”. The
second bounds the expected number of intersecting k-cliques. The final lemma gives a lower
bound on the expected number of disjoint uncorrelated k-cliques.

We remind the reader that all three lemmas apply to arbitrary d-dependent random
graph distributions.

I Lemma 26 (Restatement of Lemma 12). Suppose d and k are integers such that dk3 ď n.
Fix any d-dependent graph Gdpn, pq, and let S be a set of k vertices uniformly chosen from
V . Then, we have

PrrS is uncorrelateds ě 1´ 3dk3

2n .

Proof. We divide the possible conflicts into two classes, bound the probability of each, and
use a union bound. Say that correlated edges are local if they share a vertex. Otherwise, call
them remote. Let L and R be the events that S contains a local and remote dependency
respectively.

First, we bound PrrRs. Imagine building S by picking vertices v1, . . . , vk one at a time
uniformly. Let Si :“ tv1, . . . , viu, and let Bi be the the set of vertices that would create a
remote dependency if added to Si. Note that B1 “ H since there are no edges in S1 (it
contains only one vertex). More importantly, for i ą 1, there are at most

`

i
2
˘

¨ p2dq ă di2

vertices in Bi, because Si contains
`

i
2
˘

edges; each edge depends on at most d other edges,
and each of these edges contributes at most two vertices to Bi. It follows that R is avoided
if vi`1 R Bi for each i “ 2 . . . k ´ 1. There are pn´ iq choices for vi`1, so

Prr Rs ě
k´1
ź

i“2

ˆ

1´ di2

n´ i

˙

ě

ˆ

1´ dk2

n´ k

˙k´2

ě 1´ dk3

n
,

Hence PrrRs ď dk3{n. At first glance, it might appear like we’ve handled local dependencies
as well. However, it is possible that when adding vi, we add local dependent edges, if these
edges are both adjacent to vi. Thus, we handle this case separately.

Let Lij denote the event that i, j P S and there are no local dependencies in S involving
pi, jq. Call a vertex ` bad for pi, jq if either pi, `q or pj, `q depend on pi, jq. There are at most
d bad vertices for pi, jq. Note that Prri, j P Ss “

`

n´2
k´2

˘

{
`

n
k

˘

“ kpk ´ 1q{npn´ 1q and that

Prr Lij |i, j P Ss ě

ˆ

n´ 2´ d
k ´ 2

˙

{

ˆ

n´ 2
k ´ 2

˙

ě

d´1
ź

z“0

ˆ

1´ k ´ 2
n´ 2´ z

˙

ě

ˆ

1´ k ´ 2
n´ 2´ d

˙d

ě 1´ dpk ´ 2q
n´ 2´ d

ě 1´ dk

n
.
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It follows that PrrLijs “ Prri, j P SsPrrLij |i, j P Ss ď
kpk´1q
npn´1q ¨

dk
n . There are

`

n
2
˘

possible
pairs i, j, so by a union bound, we have PrrLs ď npn´1q

2
kpk´1q
npn´1q

dk
n ď dk3

2n . Another union
bound on R and L completes the lemma. J

I Lemma 27. Let d, p, k be such that k ă logpn{p2d log3 nqq
log 1{p . Fix a d-dependent random graph

distribution Gdpn, pq. Let G „ Gdpn, pq, and let W be the set of ordered pairs pS, T q such
that S, T are intersecting uncorrelated k-cliques. Then,

Er|W |s ď 2k
ˆ

n

k

˙

p2pk
2q´1

ˆ

k

2

˙ˆ

n

2

˙

.

Note: To understand the relationship between d, k, p, n, it is helpful to consider the case
d “ nop1q. In this setting, the lemma holds as long as k ď p1´ op1qq log n

log 1{p .

Proof. Let S, T be arbitrary sets of k vertices, and let X “ S X T . We calculate Er|W |s by
iterating over all possible values of S,X and for each pair, counting the expected number of
T such that S X T “ X and S, T are both k-cliques. For S,X, let F pS,Xq be the expected
number of uncorrelated k-cliques T such that S X T “ X, conditioned on S being a
k-clique. Also let F p`q be the maximum of all F pS,Xq, taken over all S and all X Ă S with
|X| “ `. We have

Er|W |s “
ÿ

S

PrrS is k-cliques
ÿ

XĂS

ÿ

T :SXT“X

PrrT is k-clique|S is k-cliques (1)

“
ÿ

S

pp
k
2q

ÿ

XĂS

F pS,Xq (2)

ď
ÿ

S

pp
k
2q

k´1
ÿ

`“2

ÿ

XĂS
|X|“`

F p`q (3)

ď

ˆ

n

k

˙

pp
k
2q
ÿ

`

ˆ

k

`

˙

F p`q . (4)

Next, we obtain an upper bound on F p`q. Since we need only an upper bound, we take a
very pessimistic approach. Let M Ă rns zS be the set of vertices adjacent to an edge e that
depends on some edge from SzX. Each edge in SzX depends on at most d other edges, and
there are

`

k
2
˘

´
`

`
2
˘

edges in SzX. Therefore, |M | ď dp
`

k
2
˘

´
`

`
2
˘

q. Now, let EpMq be the set of
edges with one endpoint in M and the other endpoint in M YX. Each of these edges may be
correlated with edges in SzX, so for any e P EpMq we assume only Prre|S is k-cliques ď 1.
On the other hand, by construction any edge e not in EpMq is independent of S, and
therefore Prre P G|S is k-cliques “ p. Next, we sum over all possible T , grouping by how
much T intersects M . Suppose |T XM | “ `1 for some 0 ď `1 ď k ´ `. Then, T contains

`

k
2
˘

edges,
`

`
2
˘

of these edges have both endpoints in X, and are fixed after conditioning on S
being a k-clique. Of the remaining edges, ` ¨ `1 `

`

`1

2
˘

are in EpMq; the rest are independent
of S. Thus, when |T XM | “ `1, then PrrT is k-clique|S is k-cliques ď pp

k
2q´p

`
2q´``1´p`1

2q.
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F p`q “
ÿ

T :SXT“X

PrrT is k-clique|S is k-cliques (5)

“

k´
ÿ̀

`1“0

ÿ

T :SXT“X
|TXM |“`1

PrrT is k-clique|S is k-cliques (6)

ď

k´
ÿ̀

`1“0

ˆ

M

`1

˙ˆ

n´ k ´M

k ´ `´ `1

˙

pp
k
2q´p

`
2q´``1´p`1

2q (7)

“ pp
k
2q´p

`
2q

k´
ÿ̀

`1“0
F˚p`1q , (8)

where F˚p`1q :“
`

M
`1

˘`

n´k´M
k´`´`1

˘

p´``1´p`1

2q. Next, we show that the summation in Equation (8)
telescopes.

I Claim 28. If k ď
log

´

n
2d log3 n

¯

log 1{p then
řk´1

`1“0 F
˚p`1q ď 2F˚p0q.

Proof. Fix any 0 ď i ă k ´ `, and consider F˚pi ` 1q{F˚piq. Using
`

a
b`1

˘

{
`

a
b

˘

“ a´b
b`1 and

`

a
b´1

˘

{
`

a
b

˘

“ b
a´b´1 and recalling that M ă d

`

k
2
˘

, we have:

F˚pi` 1q
F˚piq

“

`

M
i`1

˘`

n´k´M
k´pi`1q

˘

p´`pi`1q´pi`1qi{2

`

M
i

˘`

n´k´M
k´i

˘

p´`i´ipi´1q{2

“
M ´ 1
i` 1

k ´ i

n´ k ´M ´ k ` i
p´`´i

ď
dk2

2
k

n´ opnq

ˆ

1
p

˙k

ă
dk3

n

ˆ

1
p

˙k

ă
k3

2 log3 n

ă 1{2 ,

where the penultimate inequality holds because of our assumption on k, and the final
inequality holds because k ă logn. We’ve shown that for all i, F˚pi` 1q{F˚piq ă 1{2. Hence
F˚piq ă F˚p0q2´i, and so

ř

`1 F
˚p`1q ď

ř

`1 F
˚p0q2´`1 ď 2F˚p0q. J

From claim 28, we see that

F p`q ď pp
k
2q´p

`
2q

k´
ÿ̀

`1“0
F˚p`1q ď 2pp

k
2q´p

`
2qF˚p0q “ 2pp

k
2q´p

`
2q

ˆ

n´ k ´M

k ´ `

˙

.

Now, plugging this inequality back into Equation 4, we get

Er|W |s ď

ˆ

n

k

˙

pp
k
2q
ÿ

`

ˆ

k

`

˙

F p`q ď 2
ˆ

n

k

˙

pp
k
2q
ÿ

`

ˆ

k

`

˙

pp
k
2q´p

`
2q

ˆ

n´ k ´M

k ´ `

˙

.

Let Gp`q :“ pp
k
2q´p

`
2q
`

k
`

˘`

n´k´M
k´`

˘

, and for 2 ď ` ă k ´ 1, let G˚p`q :“ Gp`q{Gp` ` 1q. Note
that

G˚p`q “ p` `` 1
k ´ `

n´ 2k ´M ` `` 1
k ´ `

.
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We claim that G˚p`q decreases as long as p ă 8{27´ Ωp1q. To see this, note that

G˚p`q

G˚p`` 1q “ p
`` 1
`

¨

ˆ

k ´ `` 1
k ´ `

˙2
n´ 2k ´M ` `` 1
n´ 2k ´M ` `

ă pp3{2q3p1` op1qq ,

where the inequality holds because pa` 1q{a “ 1` 1{a and because `, k´ ` ě 2 for the range
of ` we need when calculating G˚p`q. In a way, saying that G˚p`q is decreasing amounts to
saying that Gp`q is convex – once Gpiq ď Gpi` 1q, then Gpjq ď Gpj ` 1q for all j ą i. Next,
a straightforward calculation using our choice of k shows that Gpk ´ 1q ď Gp2q. Thus, it
must be the case that Gpiq ď Gp2q for all i, and therefore

Er|W |s ď 2
ˆ

n

k

˙

pp
k
2qkGp2q

“ 2k
ˆ

n

k

˙

p2pk
2q´1

ˆ

k

2

˙ˆ

n´ k ´M

k ´ 2

˙

ă 2k
ˆ

n

k

˙

p2pk
2q´1

ˆ

k

2

˙ˆ

n

k ´ 2

˙

.

This completes the proof of Lemma 27. J

Finally, we prove the lemma that in any d-dependent graph distribution, the expected
number of disjoint uncorrelated k-cliques is large. Recall that Y is the maximal number
of disjoint uncorrelated k-cliques.

I Lemma 29 (Restatement of Lemma 18). ErY s ě n2p
19k5 .

Proof. We construct Y probabilistically, by selecting each potential uncorrelated k-clique
with small probability and removing any pairs of k-cliques that intersect. Let K denote the
family of uncorrelated k-cliques. By Lemma 12 and our choice of d, a randomly chosen
set S of k vertices is uncorrelated with probability at least 2{3. By this and our choice of
k, we have

Er|K|s ě
2
3

ˆ

n

k

˙

pp
k
2q .

Recall that W is the set of ordered pairs tS, T u of uncorrelated k-cliques such that
2 ď |S X T | ă k. For our argument, we require an upper bound on Er|W |s. In the standard
random graph model, if |S X T | “ `, then PrrS, T both k-cliquess “ pp

k
2q´p

`
2q. However, this

no longer holds for d-dependent distributions, even if S and T are both uncorrelated.
This is because while edges in S and T are independent, edges in S but not T may be
correlated with edges in T but not S. As an extreme case, suppose all edges in S are
independent, but each edge in S zT is completely correlated with an edge in T zS. Then,
PrrS, T k-cliquess “ PrrS is k-cliques “ PrrT is k-cliques “ pp

k
2q. Essentially, allowing edges

to be correlated has the potential to drive up the variance on the number of k-cliques, even
when these k-cliques are uncorrelated. This is perhaps to be expected. Nevertheless, in
Lemma 27, we were able to show that when d is small, this increase is not much more than
in the standard graph model.

With this claim, we are now able to construct a large set of disjoint uncorrelated
k-cliques with high probability. Create K 1 Ď K by selecting each uncorrelated S P K

independently with probability

PrrS P K 1s “ γ “
1

12kpp
k
2q´1`k

2
˘`

n
k´2

˘

.
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Finally, create L from K 1 by removing each pair S, T P K 1 such that S, T P W . By
construction, L is a set of edge-disjoint uncorrelated k-cliques; furthermore, we have

Er|L|s “ γEr|K|s ´ 2γ2Er|W |s

ě
2γ
3

ˆ

n

k

˙

pp
k
2q ´

2γ ¨ 2k
`

n
k

˘

p2pk
2q´1`k

2
˘`

n
k´2

˘

12kpp
k
2q´1`k

2
˘`

n
k´2

˘

“
2γ
3

ˆ

n

k

˙

pp
k
2q ´

γ

3

ˆ

n

k

˙

pp
k
2q

“
γ

3

ˆ

n

k

˙

pp
k
2q

“

`

n
k

˘

pp
k
2q

3 ¨ 12kpp
k
2q´1`k

2
˘`

n
2
˘

ě

`

n
k

˘

`

n
k´2

˘

p

36k
1
`

k
2
˘

ě
p

18k3

`

n
k

˘

`

n
k´2

˘

“
p

18k3
pn´ k ´ 2qpn´ k ´ 1q

kpk ´ 1q

ě
p

18k3
18n2

19k2

“
n2p

19k5 ,

where the final inequality holds for large enough n. J

6 Dependent Graphs with Large Cliques or Large Dependency

In this section, we provide results that witness the tightness of our current bounds. The next
lemma shows that there exist dependent random graphs that almost surely contain cliques
of size Ωpdq, and others that almost surely have cliques of size Ωp

?
d logpnqq.

I Lemma 30 (Restatement of Lemma 5). For all constant 0 ă p ă 1 and d “ opnq,
1. there exists a d-dependent random graph Gdpn, pq such that

Pr
„

cliquepGdpn, pqq ą
d
?
p

2 ´ d
1
2 p

1
4



ą 1´ e´2n{d .

2. there exists a d-dependent random graph Gdpn, pq such that almost surely

cliquepGdpn, pqq “ Ωp
?
d logpnqq .

Proof. We give two constructions.
For the first result, fix d1 :“ d

?
p

2 ´
a

d
?
p and M1 :“ 2n{d. Partition the vertices into

M1 sets V1, . . . , VM1 each of size d{2. Let cpiq denote the part containing i (we think of i
has having color c). Now, let tXi,c : i P V, 1 ď c ďM1u be a series of i.i.d. random bits with
PrrXi,c “ 1s “ ?p, and place pi, jq P Gdpn, pq if Xi,cpjq

Ź

Xj,cpiq “ 1. Thus, pi, jq is an edge
with probability p. Also note that edges pi, jq and pi1, j1q are dependent if either cpiq “ cpi1q

or cpjq “ cpj1q. Since there are d{2 vertices in each V`, pi, jq is dependent on at most d other
edges and Gdpn, pq is d-dependent.

APPROX/RANDOM’15
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Now, fix a color c, and let Sc :“ ti : cpiq “ c ^ Xi,c “ 1u. For any i, j P Sc we have
Xi,c “ Xj,c “ 1 and that cpiq “ cpjq “ c. Therefore, pi, jq P Gdpn, pq for any i, j P Sc, hence
Sc is a clique.

Next, consider |Sc|. There are d{2 vertices with color c, so Er|Sc|s “
d
?

p

2 . By the Chernoff
bound, Prr|Sc| ă d1s ă 1

e , so the probability that there is some color c with |Sc| ě d1 is at
least 1´ e´2n{d. Therefore, Gdpn, pq almost surely contains a clique of size at least d1.

For the second graph, partition the vertices rns into M2 :“ n{
?
d subsets V1, . . . , VM2 ,

each of size
?
d. Let cpiq be the subset containing i. Let tXc1,c2 : 1 ď c1, c2 ďM2u be a set

of independent, identically distributed binary variables with PrrXc,c1 “ 1s “ p. Now, place
edge pi, jq in the graph if Xcpiq,cpjq “ 1. In this way, for any Vs, Vt, either all edges between
Vs and Vt exist, or none do, and similarly for any Vs, either all edges between vertices in Vs

will be in the graph, or none will.
Next, let S be the set of all i such that edges between vertices in Vi are in the graph. Each

i P S with probability p. By standard Chernoff bounds, |S| ě pM2{2 with high probability.
Let M 1 :“ pM2{2. The construction above induces a new random graph G1 on M 1 vertices
where all edges are i.i.d. in G1 with probability p. i.e., G1 is an Erdős-Rényi random graph
on M 1 vertices. By [7], cliquepG1q ě 2 logpM 1q{ logp1{pq “ Ωplogpnq{ logp1{pqq with high
probability. Finally, a clique of size k in G1 gives a clique of size k

?
d in G, hence G contains

a clique of size Ωp
?
d logpnq{ logp1{pqq with high probability. J

Our second result in this section shows that when the dependency factor becomes Ωpnq,
essentially nothing can be said about the clique number of dependent random graphs.

I Lemma 31 (Restatement of Lemma 6). Fix d :“ 2n´ 2. Then, the following statements
hold.
1. For any 0 ă p ă 1, there exists a d-dependent random graph Gdpn, pq that is bipartite

with certainty.
2. For any 1{2 ď p ă 1, there exists a d-dependent random graph Gdpn, pq such that

cliquepGdpn, pqq ě n{2 with certainty.

Proof. We again provide two constructions. For the first construction, set q1 :“ 1´
?

1´ p,
and let X1, . . . , Xn be i.i.d. random bits such that Xi “ 1 with probability q1. Think of each
Xi as being assigned to vertex vi. Now, place edge pi, jq P Gdpn, pq iff Xi ‘Xj “ 1. Note
that pi, jq P Gdpn, pq with probability 2qp1´ qq “ p. It is easy to see that pi, jq depends on
pi1, j1q only if either i “ i1 or j “ j1. There are at most 2pn´1q such edges, hence the random
graph is d-dependent. Finally, we claim that the graph is bipartite. To see this, suppose for
the sake of contradiction that Gdpn, pq contains an odd cycle p1, 2, . . . , 2k ` 1, 1q. Without
loss of generality, assume that X1 “ 1 (the proof is similar if X1 “ 0.) Since each edge
pi, i` 1q P Gdpn, pq, we must have that X2, X4, . . . , X2k all equal 0, and X1, X3, . . . , X2k`1
all equal 1. But then X1 “ X2k`1 “ 1, hence p1, 2k ` 1q R Gdpn, pq. This contradicts the
assumption that p1, 2, . . . , 2k ` 1, 1q is a cycle.

We proceed with the second construction in a similar manner. Let q2 :“ 1
2 p1´

?
2p´ 1q,

and let X1, . . . , Xn be i.i.d. random bits with PrrXi “ 1s “ q2. This time, place pi, jq P
Gdpn, pq iff Xi “ Xj . Note that pi, jq is an edge with probability q2 ` p1´ qq2 “ p. Now, let
S0 :“ ti : Xi “ 0u and similarly S1 :“ ti : Xi “ 1u. It is easy to see that S0 and S1 both
cliques in Gdpn, pq. One of them must contain at least half the vertices. J
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7 Results for Non-Boolean Pointer Jumping

In this section, we leverage the protocol for mpj3 to achieve new results for the non-Boolean
Pointer Jumping problem ympj. Let Q be the protocol for mpj3 given in Lemma 9. First, we
give a protocol for ympj3. The cost matches the upper bound from [12] but has the advantage
of working in the Simultaneous Messages model.

I Lemma 32 (Restatement of Lemma 10). There is an Opn log lognq-bit SM protocol for
ympj3.

Proof. Run Q logn times in parallel, on inputs pi, f2, z1q, pi, f2, z2q, . . . , pi, f2, zlog nq, where
zj denotes the jth most significant bit of f3. This allows the Referee to recover each bit of
f3pf2piqq “ ympjpi, f2, f3q. J

Next we give a new upper bound for ympj4. As far as we know, this is the first protocol
for ympjk for any k that uses a sublinear amount of communication.

I Theorem 33 (Restatement of Theorem 8). There is a one-way protocol for ympj4 with cost
Opn plog log nq2

log n q.

Proof. Let i, f2, f3, f4 be the inputs to ympj4, and for 1 ď j ď logn, let zj P t0, 1un

be the string obtained by taking the jth most significant bit of each f3pwq (i.e., zjrws

is the jth most significant bit of f3pwq.) Fix a parameter k to be determined shortly.
plr1,plr2, and plr3 run Q on tpi, f2, zjq : 1 ď j ď ku. From this, plr3 learns the first
k bits of f3pf2piqq. She then sends f4pzq for every z P t0, 1ulog n whose k most significant
bits match those of f3pf2piqq. plr4 sees i, f2, and f3, computes z˚ :“ f3pf2piqq, and
recovers f4pz

˚q from plr3’s message. Note that there are n{2k strings that agree on
the first k bits, and for each of these strings, plr3 sends logn bits. Therefore, the cost
of this protocol is k costpQq ` n logpnq{2k “ O

´

kn log log n
log n ` n logpnq2´k

¯

. Setting k :“
2 log ln 2 log n

log log n “ Θplog lognq minimizes the communication cost, giving a protocol with cost

O
´

n plog log nq2

log n

¯

. J
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