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Configuration spaces of convex and embedded

polygons in the plane

Don Shimamoto∗ and Mary Wootters†

A celebrated result of Connelly, Demaine, and Rote [6] states that any poly-
gon in the plane can be “convexified.” That is, the polygon can be deformed
in a continuous manner until it becomes convex, all the while preserving the
lengths of the sides and without allowing the sides to intersect one another. In
the language of topology, their argument shows that the configuration space of
embedded polygons with prescribed side lengths deformation retracts onto the
configuration space of convex polygons having those side lengths. In particular,
both configuration spaces have the same homotopy type. Connelly, Demaine,
and Rote observe (without proof) that the space of convex configurations is con-
tractible. Separately, work of Lenhart and Whitesides [10] and of Aichholzer,
Demaine, Erickson, Hurtado, Overmars, Soss, and Toussaint [1] had shown that
the space of convex configurations is connected. These results are part of the
literature on linkages. The polygons here are mechanical linkages in which the
sides can be viewed as rigid bars of fixed length arranged in a cycle and the
vertices as joints about which the bars can rotate.

In this note we determine the topology of the space of convex configurations
and the space of embedded configurations up to homeomorphism. We regard
two polygons as equivalent if one can be translated and rotated onto the other.
After a translation, we may assume that one of the vertices is at the origin
and then, after a rotation, that one of the adjacent sides lies along the positive
x-axis. To fix some notation, let ~̀ = (`1, . . . , `n) be a given sequence of side
lengths, where `i > 0 for all i and n ≥ 3. The configuration space of planar
polygons with these side lengths is defined by:

X(~̀) = {(p1, . . . , pn) ∈ (R2)n : p1 = (`1, 0), pn = (0, 0), and
|pi − pi−1| = `i for i = 1, . . . , n}.

Here, and in what follows, subscripts should be taken modulo n where appro-
priate. Also, to simplify the notation, we suppress the dependence on ~̀, writing
X rather than X(~̀). Note that X inherits a natural topology as a subspace
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of (R2)n. To any element p = (p1, . . . , pn) in X we associate its sequence of
turn angles θ = (θ1, . . . , θn), where θi is the signed angle at pi from the ith edge
ei = pi − pi−1 to the (i+ 1)th edge ei+1 = pi+1 − pi. We choose θi to lie in the
interval (−π, π]. A positive value of θi corresponds to a left turn, and a negative
value to a right turn.

pn = (0, 0) p1 = (ℓ1, 0)

p2
p3

pn−1

ℓ1

ℓ2ℓn

θ3

θ1

Figure 1: A polygon in the plane with vertices, side lengths, and turn angles
labeled.

The definition of X permits polygons that intersect themselves. We exclude
such configurations by focusing on embedded polygons, that is, those in which
the edges do not intersect except at common endpoints. These polygons fall
into two components depending on whether they are traversed counterclockwise
(
∑
i θi = 2π) or clockwise (

∑
θi = −2π). The two components are homeo-

morphic to one another by the transformation that sends each polygon to its
reflection in the x-axis. Here we concentrate on the counterclockwise compo-
nent:

0.1. Let XE denote the set of polygons p = (p1, . . . , pn) in X that are embedded
in R2 and satisfy

∑
i θi = 2π.

Within XE is the subset of convex configurations:

0.2. Let XC denote the subset of XE consisting of convex polygons.

These are the elements of XE whose turn angles satisfy θi ≥ 0 for all i.
The topology of the configuration space X has been studied using a variety

of techniques by several authors (for instance, Hausmann [7], Kamiyama [8],
and Kapovich and Millson [9]). The analysis can get complicated, but certain
basic properties are easy to establish. For instance, suppose that X contains
no straight line configurations, that is, no configurations in which all the edges
lie along a single line. This is the generic situation, since X contains a straight
line configuration if and only if it is possible to choose values εi = ±1 such
that

∑
i εi`i = 0. Then it is well known that X is a C∞ compact orientable

manifold of dimension n− 3 (see Shimamoto and Vanderwaart [12] for a recent
exposition). The space of embedded polygons XE is an open subset of X, hence

2



also an (n− 3)-dimensional manifold. The space of convex configurations XC is
a closed subset of X (though not a smooth one, as we shall see). Here it is still
important to exclude straight line configurations, since otherwise a sequence
of convex configurations could converge to a straight line configuration, which
would be a limit point not in XC .

For the remainder of the paper, assume that the side lengths are such that
X contains no straight line configurations. Our main results describe the topo-
logical type of XC and XE . Specifically, we prove that:

0.3. XC is homeomorphic to a closed (n− 3)-dimensional ball B, e.g., to B =
{x ∈ Rn−3 : |x| ≤ 1},

and

0.4. XE is homeomorphic to Rn−3.

Statement (0.3) is proved in section 1 (where it is called Theorem 5), and
(0.4) is proved in section 2 (Theorem 7). We close in section 3 with a counterex-
ample to a conjecture of Connelly, Demaine, and Rote regarding the closure of
XE in X.

1 Convex configurations

A polygon p = (p1, . . . , pn) in X has a sequence of turn angles θ = (θ1, . . . , θn)
in Rn. But conversely the turn angles determine the polygon as well, since
p1 = (`1, 0) by our convention and, for j > 1,

pj = pj−1 + `j
(

cos(
j−1∑
k=1

θk) , sin(
j−1∑
k=1

θk)
)
.

In this section we will be concerned only with convex polygons, in which case θi ∈
[0, π) for all i. This eliminates any worries about continuity problems modulo
2π as the angles vary. Thus the function t(p1, . . . , pn) = (θ1, . . . , θn) that sends
a polygon to its turn angles maps the subspace XC of convex configurations
homeomorphically onto its image S = t(XC) in Rn. The set S consists of
all sequences of turn angles that are realized by convex polygons with side
lengths ~̀. We will determine the topological type of XC by studying how it
is parametrized by S, essentially executing a search of all possible turn angles.
Actually, a convex polygon is determined by its first n − 3 turn angles alone,
but for our arguments it is convenient to keep track of all n of them.

The general strategy here is to examine inductively how much freedom there
is to rotate each of the edges. For instance, the first edge is fixed from p0 =
pn = (0, 0) to p1 = (`1, 0) by our convention. We then see how much the second
edge can be “wiggled” under the restriction that the whole polygon remains
convex. For each position reached by this motion, we see how much the next
edge can be wiggled, and so forth. By doing this for all the edges (or at least
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for the first n − 2 of them), all configurations will have been visited. We show
that each of the wiggle ranges is an interval, which is nontrivial except possibly
when one of the previous positions was set to an interval endpoint. Moreover,
the endpoints of these intervals vary continuously with the angle choices in the
positions that precede it. Thus the space of convex configurations can be built
up iteratively as a union of segments of continuously varying length.

1.1 The maximum and minimum turn angles

For k ≤ n, let πk : Rn → Rk be the projection onto the first k coordinates,
πk(x1, . . . , xn) = (x1, . . . , xk), and let Sk = πk(S). In words,

Sk ={(θ1, . . . , θk) : there exist θk+1, . . . , θn such that (θ1, . . . , θn) is the
sequence of turn angles of a convex polygon p}.

We determine the topology of S by analyzing the relation between Sk and Sk−1

inductively.
For example, S ≈ XC is connected [1], [10] and compact, so, since π1 is

continuous, S1 is a finite closed interval, say

S1 = [ν1, µ1]. (1.1)

Here µ1 represents the maximum possible turn angle at p1, and ν1 represents
the minimum.

In general, if k > 1, let α = (α1, . . . , αk−1) in Sk−1 be given. These turn
angles determine a fixed chain of k edges from p0 to pk. Define

Rk(α) = {θk ∈ R : (α, θk) ∈ Sk}.

This represents the wiggle room mentioned earlier for the (k+ 1)th edge, given
fixed positions for the first k edges. Next let

νk(α) = inf Rk(α) and µk(α) = supRk(α).

These are the smallest and largest possible turn angles at pk, again assuming
an initial fixed chain up to that point is given.

We will describe various properties of νk and µk including the fact that
they are actually attained, that is, νk(α), µk(α) ∈ Rk(α), by deforming our
polygons into certain standard configurations. In some cases, we sketch details
of proofs when the geometry is clear, making particular use of the observations
in Aichholzer et al. [1], for instance:

Lemma 1. Given a convex quadrilateral with vertices v1, v2, v3, v4, there is a
motion that increases the turn angles at v1 and v3 and decreases the turn angles
at v2 and v4 while preserving the lengths of the sides. The motion can continue
until one of the turn angles reaches 0 or π.
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v2

v4

v3

v1

Figure 2: Increasing the turn angles at v1 and v3 and decreasing the turn angles
at v2 and v4.

The idea is to move v3 directly away from v1 along the ray from v1 to v3. (See
Figure 2.) The positions of v2 and v4 are then determined by the side lengths.
The authors in [1] use this result to show that, given any two convex polygons
with the same sequence of edge lengths, there is a continuous motion from
one to the other in which all angles change monotonically. The monotonicity
ensures that the intermediate polygons are also convex, whence the space XC

is connected.
For convenience, we introduce the following terminology.

Definition. In a polygon (p1, . . . , pn) with turn angles (θ1, . . . , θn), a vertex pi
is called flat if θi = 0.

Now consider the minimum turn angle νk(α). If there exists a polygon having
turn angles (α, θk, . . . , θn) with θk = 0, then νk(α) = 0, since that’s always the
smallest possible turn angle for a convex polygon. Let us call this case (a).
Otherwise, suppose that θk > 0. To decrease this turn angle, we try to rotate
the (k + 1)th edge clockwise. If the subchain from pk+1 to pn is not straight,
choose a vertex pj along the way such that the turn angle θj is nonzero, Now
consider the quadrilateral pnpkpk+1pj . By keeping the subchains of the original
polygon between these vertices rigid and moving pk+1 directly away from pn as
described above, we reduce the turn angle θk. (See Figure 3(i). In the figure,
as the inscribed quadrilateral flattens, the subchains between its vertices will
rotate. Strictly speaking, this violates our convention that edge pnp1 lie along
the positive x-axis, so one should imagine a simultaneous compensating global
rotation that keeps pnp1 horizontal.) Continue until either θk = 0 or one of the
vertices along the subchain becomes flat. In the case of the latter, if the subchain
from pk+1 to pn is still not straight, repeat. In this way, we eventually reach a
configuration in which either θk = 0 (case (a) again, as in Figure 3(ii)) or the
subchain from pk+1 to pn is straight (call this case (b), shown in Figure 3(iii)).
We refer to a configuration of either of these types as minimally stretched. (For
case (a), there is not a unique such configuration, but this does not matter for
our arguments.) The procedure just given shows that, in a minimally stretched
configuration, θk = νk(α), since the turn angle θk of any other polygon can be
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reduced until it reaches such a configuration. This also implies that Rk(α) is
connected.

pn p1

pk

pk+1

pj

ℓk

Movement

θk

(i)

pn p1

pk

pk+1

ℓk

ℓk+1

(ii)

pn p1

pk

pk+1

ℓk

θk = νk(α)

(iii)

Figure 3: (i) Reducing θk; (ii) case (a): νk(α) = 0; (iii) case (b): νk(α) > 0

Finally we claim that νk(α) is a continuous function of α, that is, a small
change in the initial subchain produces a small change in the minimum turn
angle. This is clear except possibly at the overlap of cases (a) and (b), that,
is, when νk(α) = 0 and the subchain from pk+1 to pn is straight (Figure 4).
Here a small change in α can lead either to case (a) or (b), but either way the
minimally stretched configuration changes only slightly, and hence so does the
minimum turn angle.

pn p1

pk

pk+1

ℓk

ℓk+1

Figure 4: Borderline case.

The case of the maximum turn angle µ(α) is similar, only now we want to
rotate the (k + 1)th edge counterclockwise as far as possible. We do this by
trying to straighten the back end of the polygon as much as we can, pulling the
edge towards it in the process. To make this more precise, let a configuration
with turn angles (α, θk, . . . , θn) be given. If the subchain from pk to pn−1 is not
straight, choose a vertex pj along the way for which θj 6= 0. Now consider the
quadrilateral pnpkpjpn−1. By moving pn−1 directly away from pk, we increase
the turn angle θk (Figure 5(i)). Continue until, in the original polygon, either
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one of the vertices along the subchain becomes flat or pn becomes flat. In
the first case, if the subchain from pk to pn−1 is still not straight, repeat the
procedure. On the other hand, if pn is flat, repeat with pn−1 in place of pn and
look at the subchain from pk to pn−2. Eventually, one reaches a configuration
in which the subchain from pk to pj is straight for some j > k and the vertices
from pj+2 to pn, if any, are flat. Let us call such a configuration maximally
stretched (Figure 5(ii)). In particular, at most two vertices from pk+1 to pn are
not flat, and, if there are two, they are adjacent to one another.

pn p1

pk

pk+1

ℓk

pj

pn−1

Movement

θk

(i)

pn p1

pkpk+1

ℓk

pj

pj+1 pn−1

θk = µk(α)

(ii)

Figure 5: (i) Increasing θk; (ii) maximally stretched configuration.

As with νk, in a maximally stretched configuration θk = µk(α) because any
polygon can be deformed to such a configuration with θk increasing along the
way. In addition, µk(α) varies continuously with α. This time, the borderline
case is when the subchains from pk to pj and from pj to p1 are both straight.
When this happens, a small change in α can lead to maximally stretched config-
urations with straight subchains either from pk to pj or from pk to pj−1. While
this description may sound discontinuous, the maximally stretched configura-
tions themselves change only slightly, and hence so does µk(α).

To recap, we have shown that Rk(α) = [νk(α), µk(α)]. Since by definition,
Sk = {(α, θk) ∈ Rk | α ∈ Sk−1, θk ∈ Rk(α)}, the preceding discussion can be
summarized as follows.

Lemma 2. There exist real numbers ν1 and µ1 such that S1 = [ν1, µ1], and, for
k > 1, there exist continuous functions νk, µk : Sk−1 → R such that

Sk = {(α, θk) ∈ Rk : α ∈ Sk−1, νk(α) ≤ θk ≤ µk(α)}. (1.2)

In other words, Sk is the region over Sk−1 lying between two continuous
graphs.

1.2 The topology of Sk.

To complete the description of the topology of Sk, we use one final technical
lemma.

Lemma 3. Suppose that 2 ≤ k ≤ n− 3. If α ∈ IntSk−1, then νk(α) < µk(α).
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Here the interior of Sk−1 is as a subset of Rk−1.

Proof. Suppose to the contrary that νk(α) = µk(α). In other words, given the
initial subchain from p0 to pk, the polygon is completely rigid. Thus there exists
a polygon with turn angles (α, θk, . . . , θn) that is simultaneously minimally and
maximally stretched. We consider two cases.

First, suppose that θk = 0 (Figure 6(i)). Then the straight subchain from
pk to pj that is part of a maximally stretched configuration is contained in
a straight subchain from pk−1 to pj . Hence, this configuration is maximally
stretched at pk−1 as well, that is, αk−1 = µk−1(α1, . . . , αk−2). By (1.2), this
contradicts the assumption that α ∈ IntSk−1.

pn p1

pk−1

pk
ℓk−1

(i)

pn p1

pk

pk+1
ℓk

θk

(ii)

pn p1

pk

pk+1
ℓk

θk

(iii)

Figure 6: θk = νk(α) = µk(α): (i) θk = 0; (ii) θk > 0, pk+1 not flat; (iii) θk > 0,
pk+1 flat.

On the other hand, suppose that θk > 0. Then, as a minimally streched
configuration, the subchain from pk+1 to pn is straight. If pk+1 is not flat (Figure
6(ii)), then, as part of a maximally stretched configuration, this subchain can
consist of at most one edge. Thus k ≥ n − 2, contrary to assumption. But if
pk+1 is flat, then the entire subchain from pk to pn is straight, meaning that
the configuration is minimally stretched at pk−1, i.e. αk−1 = ν(α1, . . . , αk−2),
again contradicting α ∈ IntSk−1 (Figure 6(iii)).

In all cases we reach a contradiction.

From this we obtain the topological type of Sk.

Proposition 4. If 1 ≤ k ≤ n − 3, then Sk is homeomorphic to a closed k-
dimensional Euclidean ball.

Proof. We use induction on k. For k = 1, the result is given by (1.1). If k > 1,
we use (1.2). By induction, we may replace Sk−1 by a closed (k−1)-dimensional
ball, up to homeomorphism (Figure 7(i)). Let ∂Sk−1 denote the boundary of
Sk−1, a topological (k − 2)-dimensional sphere. Let A denote the graph of νk
restricted to ∂Sk−1, i.e., A = {(α, νk(α)) : α ∈ ∂Sk−1}. Similarly, let B denote
the graph of µk restricted to ∂Sk−1. Choose some large number M > 0, and
construct two cones, C1 from A to the point (0, . . . , 0,−M) ∈ Rk and C2 from
B to the point (0, . . . , 0,M) (Figure 7(ii)).
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Rk-1

R

Sk-1

Z

C2

C1

Rk-1

R

Sk-1

Sk

!k = "k-1(#)

!k = $k-1(#)

(i) (ii)

Figure 7: (i) Sk over Sk−1, (ii) region between two cones.

Let Z be the region over Sk−1 lying between these two cones. Then Sk can be
mapped homeomorphically onto Z by taking each “vertical” interval α×Rk(α)
in Sk and dilating it in the θk-direction until it lies between the two cones. Note
that this dilation always makes sense when α ∈ IntSk−1 by Lemma 3, and no
dilation is necessary when α ∈ ∂Sk−1. Finally, Z is star-shaped in Rk with
respect to the origin, so by radial projection it maps homeomorphically onto a
closed k-dimensional ball, completing the proof.

As mentioned earlier, a convex polygon is determined by its first n− 3 turn
angles, so XC ≈ S is homeomorphic to Sn−3. As a corollary to Proposition 4
we obtain the main result of this section:

Theorem 5. Assume that the configuration space X(~̀) contains no straight
line configurations. Then the space XC of convex polygons with side lengths ~̀
is homeomorphic to a closed Euclidean ball of dimension n− 3.

2 Embedded configurations

We now determine the topology of the space XE of embedded configurations.
To do so, we use the following characterization of Euclidean space (see Brown
[2] and Milnor [11]):

2.1. Let M be an n-dimensional manifold such that every compact subset is
contained in an open set homeomorphic to Rn. Then M itself is homeomorphic
to Rn.

To apply this to XE , we proceed in two steps. First we show that the sub-
space XC of convex configurations has an open neighborhood U homeomorphic
to Rn−3. Then given any compact subset K of XE , we adapt the techniques of
Cantarella, Demaine, Iben, and O’Brien [4] to stretch U so that it covers K by
expanding it along the lines of gradient flow of a suitable “energy” function.
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2.1 Putting a collar on the space of convex configurations

According to Theorem 5, the space XC of convex configurations is homeomor-
phic to a closed (n− 3)-ball, which makes it reasonable to expect that XC can
be thickened slightly within XE to obtain a neighborhood homeomorphic to an
open ball, hence to Rn−3. We verify this by attaching a collar around XC .
The existence of such a collar would follow from standard results in differential
topology if XC were a smooth submanifold of XE . While the result here might
also follow from general considerations, we give a direct argument instead that
the singularities are mild enough that a collar may still be obtained.

A subspace A of a topological space X is said to be bicollared if there exists
an embedding h : A× (−1, 1)→ X such that h(a, 0) = a for all a in A. Let ∂XC

denote the boundary of XC in XE . It consists of convex configurations in which
at least one turn angle is zero, and it separates the nonconvex configurations in
XE from those convex configurations whose turn angles are all strictly positive.
By work of Brown [3, p. 337] and Connelly [5, p. 180], in order to prove that
∂XC is bicollared in XE , it suffices to prove that it is bicollared locally. Thus
we need only find a suitable local model of how ∂XC sits inside XE . We do this
by identifying local coordinates. Recall that the dimension of XE is n − 3, so
that’s the number of coordinates we’re looking for.

Let a = (a1, . . . , an) be a given polygon in ∂XC with turn angles α =
(α1, . . . , αn). These are to be regarded as fixed for the remainder of this section.
Any neighborhood of a in XE contains nonconvex configurations, since some αi
is zero and there will be nearby configurations for which the corresponding turn
angle θi is negative. On the other hand, if αj > 0, we may assume that all
nearby configurations also satisfy θj > 0. The local picture depends on which of
the αi are zero. We show that n−3 of the turn angles, including those for which
αi = 0, can be used to specify configurations in a neighborhood of a uniquely.

Since a is not a straight line configuration, at least three of its turn angles
are nonzero, say αq, αr, αs 6= 0 where 1 ≤ q < r < s ≤ n. In addition, a is con-
vex, so vertex ar does not lie on the line through aq and as. Hence, the ordered
triple of vertices aq, ar, as has a well-defined orientation (e.g., clockwise or coun-
terclockwise), and we may assume that, in all sufficiently close configurations
p = (p1, . . . , pn), the triple pq, pr, ps has this same orientation as well.

We show that the n− 3 turn angles θi, i 6= q, r, s, work as local coordinates
for XE near a, that is, a given set of values θi ≈ αi for these angles uniquely
determines a configuration p = (p1, . . . , pn) near a. Certainly the given angles
determine the three subchains from pq to pr, from pr to ps, and from ps to pq,
up to rotation and translation (Figure 8). We must show that these subchains
can be attached to one another in only one way to form a polygon. In fact,
the subchain from ps to pq is completely determined since it contains the fixed
segment pnp1. Also, the distances |pq−pr|, |pr−ps|, and |ps−pq| are determined
by the given angles, which gives two possible locations for pr, but only one of
these has the proper orientation of pq, pr, ps. Hence, the entire configuration p
is uniquely determined, and we may parametrize a neighborhood of a in XE by
an open set W in Rn−3.

10



ps

pn p1

pq

pq

prpr

ps

Figure 8: Three subchains determined by turn angles θi, i 6= q, r, s.

As mentioned earlier, the local description of XC near a depends on how
many of the turn angles αi are zero. Up to homeomorphism, we may permute
the coordinates in W so that the coordinates for which αi = 0 come first. Say
there are k such coordinates. Then by a further change of variables, we may
assume that a corresponds to the point (0, . . . , 0, 1

2 , . . . ,
1
2 ) with an initial string

of k zeros and that W itself is the open set

W = (−1, 1)× · · · × (−1, 1)× (0, 1)× · · · (0, 1) = (−1, 1)k × (0, 1)n−3−k.

As far as the topology is concerned, the choice of intervals is arbitrary, but we
are trying to draw a distinction between those coordinates for which the turn
angle can be zero and those for which it cannot. Recall that the “missing”
turn angles θq, θr, θs are also nonzero throughout a small enough neighborhood
since we specifically selected αq, αr, αs 6= 0. Therefore, in these coordinates, the
inclusion XC ⊂ XE corresponds to

[0, 1)k × (0, 1)n−3−k ⊂ (−1, 1)k × (0, 1)n−3−k.

It is clear that the boundary of [0, 1)k is bicollared in (−1, 1)k, hence the same
remains true after taking the product with (0, 1)n−3−k. This describes the local
picture and shows that ∂XC is locally bicollared in XE . By the results of Brown
and Connelly mentioned earlier, XC is bicollared in XE . Since XC is a closed
(n − 3)-ball, the union of XC with a collar is an open (n − 3)-ball (Figure 9).
Thus we obtain the following result:

Lemma 6. XC has an open neighborhood U in XE that is homeomorphic to
Rn−3.

For future reference, note that by shrinking U , if necessary, we may assume
that the closure U in XE is compact.

2.2 Reconfiguration along flow lines of vector fields

In [4], Canterella, Demaine, Iben, and O’Brien describe a method of convexi-
fying a polygon by decreasing its “energy.” For their purposes, energy is repre-
sented by a function F : XE → R having the properties that:
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Figure 9: Ball and collar.

i. F is differentiable of class C2 or higher;

ii. F approaches ∞ as a polygon approaches self-intersection; and

iii. F is decreasing to first order (i.e., strictly negative derivative) along strictly
expansive motions. (Recall that a motion in XE is called strictly expansive
if the distances between all pairs of vertices do not decrease and those dis-
tances between vertices not connected by a straight chain of edges actually
strictly increase, again to first order.)

Connelly, Demaine, and Rote proved that given any nonconvex configuration
p in XE a strictly expansive motion through p exists [6, pp. 214–227]. (On the
other hand, at convex configurations, strictly expansive motions are forbidden
by the Cauchy arm lemma.) Hence, according to (iii) all critical points of F lie
in XC . This, together with (ii), means that following the direction of negative
gradient flow in XE moves a polygon towards convexity.

Canterella et al. exhibit a specific energy function satisfying (i)–(iii), which
they call elliptic distance energy, given by the formula:

F (p) =
∑

edge {pi,pi+1}
vertex pj 6=pi,pi+1

1
(|pj − pi|+ |pj − pi+1| − |pi+1 − pi|)2

. (2.2)

The point is that the denominator of a typical summand vanishes if and only if
pj lies on edge pipi+1. Thus F is defined for all embedded polygons p. Moreover,
in order for a polygon to self-intersect, one of the vertices must approach one of
the edges and hence F goes to ∞. For our purposes, however, it simplifies the
argument to modify the energy slightly.

Let a : R→ R be a C∞ function such that

a(x) = 0 if x ≤ 0,

a(x) > 0 and
da

dx
(x) > 0 if x > 0.
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A standard choice is to set a(x) = e−1/x2
when x > 0. Now given an element

p = (p1, . . . , pn) in XE with turn angles θ = (θ1, . . . , θn), define:

E(p) =
(∑

θi

a(−θi)
)
· F (p) (2.3)

where F is the elliptic energy (2.2). Note that only those turn angles for which
θi < 0 contribute to the sum. Clearly E still satisfies property (i). To check (ii),
suppose that p approaches self-intersection. Then at least one turn angle must
approach a negative value. (Otherwise, the configurations would remain convex,
approaching a straight line configuration, which is not allowed.) Therefore, the
first factor in (2.3) is positive and bounded away from 0. The second factor F
is known to approach ∞, and hence so does E. Lastly suppose that α(t) is a
strictly expansive motion. This is necessarily through nonconvex configurations,
so there is always at least one negative turn angle. We denote derivatives with
respect to time by ˙( ), write Ė to mean d

dt (E ◦ α), and likewise for other such
compositions. Then

Ė =
(∑

θi

−da
dθ

(−θi) · θ̇i
)
· F +

(∑
θi

a(−θi)
)
· Ḟ . (2.4)

In any strictly expansive motion, θ̇i < 0 if θi > 0 and θ̇i > 0 if θi < 0. This
follows from, say the law of cosines and the fact that in triangle pi−1pipi+1

the side |pi+1 − pi−1| is strictly increasing while the sides `i = |pi − pi−1| and
`i+1 = |pi+1 − pi| are fixed. Thus the first term in (2.4) is negative. By the
strictly expansive property applied to F , so is the second term. Hence, Ė < 0,
showing that E satisfies (iii). This provides us with an energy function that is
nonnegative on XE and zero precisely on the subset of convex configurations
XC . In particular, by property (iii) XC is the set of critical points.

We use this to show that XE satisfies (2.1). Let K be a compact subset of
XE . By replacing K with K ∪U , where U is the open set of Lemma 6, we may
assume that U ⊂ K. (Recall that U can be taken to be compact.) The basic
idea is to let U grow outwards under the effect of the gradient of E. Perhaps
it is somewhat simpler first to reverse things and to think of K flowing towards
XC under the negative gradient. This backwards flow reduces the energy of the
points of K and brings them towards convexity, so after some finite amount of
time τ , K is shrunk inside U . We would then like to say that, going forward in
time, it follows that under positive gradient flow U is stretched so that it covers
K after time τ . The stretched set would satisfy (2.1). It is certainly true that
some portion of U covers K after time τ . But it is possible that some points
of U fly off to infinity before time τ , so that the gradient flow is not defined
on all of U over the entire interval [0, τ ]. As a result, we make some technical
adjustments to the vector field along which the flow takes place.

Let m = maxp∈K E(p), and let L = {p ∈ XE | E(p) ≥ m + 1}. Then L
is a closed subset of XE such that K ∩ L = ∅ (Figure 10). Using a partition
of unity (which in this case reduces to the C∞ Urysohn lemma), there exists a
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Figure 10: XC ⊂ U ⊂ K,K ∩ L = ∅. U is stretched until it covers K.

C∞ function b : XE → [0, 1] such that b = 1 on K and b = 0 on L. Consider
the vector field ξ = b · gradE. It agrees with gradE on K and vanishes on
L. Let ϕt denote the flow associated to ξ. By the arguments given in the
preceding paragraph, there exists a finite time τ > 0 such that ϕτ (U) covers
K. Thus ϕτ (U) is an open neighborhood of K homeomorphic to U , which is
homeomorphic in turn to Rn−3. By (2.1) this proves the following result:

Theorem 7. Assume that the configuration space X(~̀) contains no straight
line configurations. Then the space XE of embedded polygons with side lengths
~̀ is homeomorphic to the Euclidean space Rn−3.

3 A noncontractible closure

As a brief final note, we give an example in which the space XE of embed-
ded polygons is contractible, but its closure XE is not. This gives a negative
resolution to a conjecture posed by Connelly, Demaine, and Rote [6, p. 235].

For the example, consider quadrilaterals with side lengths ~̀ = (6, 4, 2, 4).
The main point is that all configurations of these quadrilaterals are embeddings
with one exception, which occurs when the edges are folded over to lie along a
line.

The full configuration space X is homeomorphic to a figure eight. One of the
lobes consists of all the counterclockwise embeddings together with a straight
line configuration which represents the point at which the two lobes are attached.
This is illustrated in Figure 11. (The second lobe consists of the reflections of
the first in the side of length 6.) Thus XE is homeomorphic to a circle with
a point deleted, which is contractible, while XE is homeomorphic to a circle,
which is not.

Of course, this example involves a straight line configuration, which we have
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Figure 11: A circle of quadrilaterals with side lengths 6, 4, 2, 4.

been excluding until now. Whether there is an example in which straight line
configurations are not allowed remains to be seen.
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