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Abstract Photoionised plasmas are common in astro-
physical environments and new high resolution spectra
from such sources have been recorded in recent years
by the Chandra and XMM-Newton satellites. These
provide a wealth of spectroscopic information and have
motivated recent efforts aimed at obtaining a detailed
understanding of the atomic-kinetic and radiative char-
acteristics of photoionised plasmas. The Z-pinch fa-
cility at the Sandia National Laboratories is the most
powerful terrestrial source of X-rays and provides an
opportunity to produce photoionised plasmas in a well
characterised radiation environment. We present mod-
elling work and experimental design considerations for
a forthcoming experiment at Sandia in which X-rays
from a collapsing Z-pinch will be used to photoionise
low density neon contained in a gascell. View factor
calculations were used to evaluate the radiation envi-
ronment at the gascell; the hydrodynamic characteris-
tics of the gascell were examined using the Helios-CR
code, in particular looking at the heating, temperature
and ionisation of the neon and the absorption of radi-
ation. Emission and absorption spectra were also com-
puted, giving estimates of spectra likely to be observed
experimentally.
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1 Introduction

Photoionised plasmas are common in astrophysical en-

vironments, typically occurring near strong sources of

X-rays such as active galactic nuclei and X-ray binaries.
In recent years, the Chandra and XMM-Newton satel-

lites have recorded high resolution spectra from astro-

physical photoionised plasmas. These contain a wealth

of spectroscopic information and have motivated recent
efforts aimed at obtaining a detailed understanding of

the atomic-kinetic and radiative characteristics of pho-

toionised plasmas. However, models used to interpret

spectra from astrophysical plasmas are complex and re-
quire many parameters to be known including the ge-

ometry of the system, gas composition and density dis-

tribution, and the energy distribution of the ionising

X-ray source. Uncertainties inherent in these parame-
ters will affect the validity of the results obtained from

the spectral analysis.

In photoionised plasmas, the radiation field plays

a dominant role in the atomic-kinetic behaviour, and
collisional processes do not strongly influence the ion-

isation balance. In contrast, the population distribu-

tion in most laboratory produced plasmas is largely

determined by collisional processes. Conditions of
strong ionising radiation field and low collisionality

are difficult to achieve experimentally, and there have

been relatively few studies of terrestrial photoionised

plasmas(1; 2; 3). The Z-pinch facility at Sandia Na-
tional Laboratories is currently the most powerful ter-

restrial source of X-rays, and is capable of producing a

photionised plasma.

In this paper, we present modelling work and ex-
perimental design considerations for a forthcoming ex-

periment at Sandia in which X-rays from a collapsing

Z-pinch plasma will be used to photoionise low den-

sity neon contained in a gascell. The aim is to pro-
duce a photoionised plasma with a simple geometry,
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known ion number density and quantified X-ray heating
flux. Absorption spectra from this well characterised
plasma will be obtained, using the Z-pinch as a back-
lighter. This work builds on a previous ‘proof of prin-
ciple’ experiment(1). In this way, we hope to obtain
a dataset which can be used to test the accuracy of

atomic data and simulation codes. The photoionised
nature of the plasma makes this data likely to be useful
to the astrophysics community.

2 Simulations

The model of the gascell behaviour was constructed in
an incremental fashion using several simulation codes to
analyse the radiation environment at the gascell, simu-
late the hydrodynamic behaviour of the gascell, and
model the atomic kinetic behaviour to produce syn-

thetic emission and absorption spectra. The results of
the modelling help us to gain an understanding of the
behaviour of the system and allow us to investigate the
role of key experimental parameters, helping to assist
the experimental design.

2.1 Radiation environment

The first part of the model is to characterise the X-ray

flux incident on the gascell from the collapsing Z-pinch.
The total heating flux has contributions from both the
Z-pinch itself and re-radiated emission from parts of
the experimental setup such as the return current can-
nister and anode plate. This part of the model is a
key element, as the gascell is heated solely by the ra-
diation field and the hydrodynamic and atomic kinetic

behaviour are directly dependent on its characteristics.
The radiation environment is modelled using the Vis-

rad view factor code(4). Based on the specified geom-
etry and material emission properties, the code calcu-
lates the radiation re-emitted from each surface of the
setup in response to a user specified X-ray radiation
source. The geometry used in the model is based on

the experimental parameters as far as possible. The Z-
pinch radiates as a black-body with a Planckian energy
distribution, and a radius-power time history inferred
from an earlier experiment (shot #z541). The Z-pinch
emission is characterised by a 60ns run-in phase, reach-
ing a peak power of 160TW at 100ns with a colour
temperature of 200eV and a pinch radius of 1.1mm;

the majority of the X-ray emission occurs between 95–
105ns. A detector was positioned at 7cm from the pinch
axis to represent the front surface of the gascell. A
shielding aperture between pinch and gascell was used
in one of the model configurations. This allows us to re-
duce the contribution of re-radiated X-ray components

to the total flux arriving at the gascell, making the

energy distribution closer to being Planckian. This is
desirable since for each Z-pinch shot, the pinch energy

spectrum is measured and by allowing the gascell to see

only the pinch we can use this information directly to

assist analysis of spectra from the gascell.
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Fig. 1 Brightness temperature at the gascell front surface

with and without aperture in place.

The total net flux arriving at the centre of the gas-

cell front surface as a function of time is shown in
fig. 1. The flux is expressed in terms of radiation bright-

ness temperature, TB, using the Stefan-Boltzman law

Jtot = σT4

B
where Jtot is the total energy-integrated

flux arriving at the surface (Wcm−2). The model pre-

dicts peak values of TB of around 40 and 45eV (cor-
responding to 2.5 × 108 and 4.5 × 108Wcm−2 of X-ray

power) with and without the aperture respectively.
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Fig. 2 Composition of the total X-ray flux, showing di-

rectly observed pinch radiation and the main re-radiated

contributions from return current cannister and anode.

Fig. 2 shows the energy resolved flux components
from the pinch, anode and return current cannister with

and without aperture at 100ns. With the aperture in

place, anode and return current cannister contributions

are reduced by a factor of ∼3 with the overall flux re-
duced by a factor of around 2. In each case, there is

almost the same contribution from the pinch. These

results show that carefully designed shielding may be
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used to reduce the contribution of re-radiated X-rays
at the gascell at the expense of reducing the overall

heating flux by a factor of ∼2.

2.2 Hydrodynamic behaviour

The time history of the energy resolved heating flux

was used to drive a hydrodynamic simulation of the

gascell using the Helios-CR code(5). A 1-dimensional
model was used, with 1.4µm Mylar walls enclosing a

1cm length of neon gas with an ion density of 1018cm−3

(30 Torrs). The heating X-ray flux was applied to one

side of the system. LTE opacity lookup tables and
Propaceos equation of state data were used for the neon

and Mylar regions. A multiangle radiation transport

model was used to account for the radiation propaga-
tion charateristics. Results presented here correspond

to a gascell with a front surface at 7cm from the Z-pinch

without an aperture in place.
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Fig. 3 Space resolved electron temperature in the gascell.
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Fig. 4 Space resolved mass density in the gascell.

Figs. 3 and 4 show space resolved temperature and

mass density behaviour from the model for times near
to the peak of the heating flux (100ns). The Mylar

walls are initially at 0 and 1 cm with the gas in be-

tween. Approximately 70% of the incident radiation
field is absorbed by the first Mylar window, leading to

heating and ablation expansion of the material into the

surrounding vacuum and into the gas region. A smaller

proportion of the unattenuated radiation is absorbed
by the neon gas and by the rear Mylar window. Shock

waves are launched into the neon gas at each Mylar-

neon interface, leading to a compression of the gas

(fig. 4). The central region of the neon is unperturbed

by the expanding Mylar near the peak of the radiation
drive, with the density remaining largely uniform and

the velocities negligible. The temperature profile in the

neon is also quite uniform, typically varying less than

2eV along the full length of the unperturbed region and
reaching a maximum of around 25eV around 5ns after

the radiation drive peak. At the times of spectroscopic

interest, we therefore expect the neon region to be char-

acterised by largely uniform conditions.

The ionisation parameter measures the relative im-
portance of the collisional and photoionisation pro-

cesses in the plasma. Here we use an ionisation pa-

rameter defined by ξ = 4πI/Ne (erg cm s−1) where Ne

is the electron number density and I the ionising flux
of radiation(1). At the time of peak Z-pinch radiation,

in the centre of the neon region we obtain ξ values of

∼2.5–3 erg cm s−1. We also estimate that the hydrogen

to helium radiative recombination exceeds the 3-body

recombination rate by a factor of around 104, suggest-
ing that the neon plasma is indeed photoionised. Addi-

tional simulations found that strategies such as moving

the gascell closer to the Z-pinch, reducing the mylar

wall thickness and decreasing the gas density, can in-
crease the ionisation parameter by a factor of 3 or more.

We note that the degrees of photoionisation found here

are small compared with those of active galactic nu-

clei with similar neon column densities (∼ 1018cm−2),

where ξ values of around 2500 erg cm s−1 have been
inferred(6).

The thickness and composition of the front window is

a particularly important factor in determining the over-

all temperature and ionisation parameter characteristic
of the neon; a thin, low density window material with

high X-ray transmission is desirable to provide the max-

imum energy for deposition into the gas. On the other

hand, the window must be robust enough to withstand

the gas pressure without excessive ‘ballooning’ of the
surface and risk of bursting. A series of Helios-CR sim-

ulations were carried out, using gascell windows of Be,

C and CH with thicknesses typically available; burst-

ing pressure calculations for these materials were also
performed, using a thin membrane model(7). For the

fill pressure of 30 Torrs, 1.4µm of Mylar was found to
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provide a reasonable compromise between X-ray atten-
uation, material strength and thickness and availability.

As a practical note, it is important to quantify the de-
formation of the gascell windows since this determines

the areal density of the gas along the spectrometer line
of sight, a quantity required for spectroscopic analysis.

2.3 Spectral emission

Hydrodynamic data from the Helios-CR simulation

were used as input to the Spect3d code (8) in order to
construct synthetic spectra. The code solves the sys-
tem of atomic rate equations self consistently with the

radiative transfer equation for a specified plasma dis-
tribution and observer line of sight. Solutions may be

obtained using either a time-dependent or steady-state
approximation. Here, we present absorption spectra in

the neon K-shell region, obtained using a line of sight
through the entire length of the gascell with the Z-pinch

X-ray flux from the Visrad simulation as the the back-
lighter. The atomic model used includes fine structure

for energy levels in the H, He and Li-like states, with
configuration averaged states for the Be-like and lower
charge states.

Fig. 5 shows the absorption spectra from the gascell
in the K-shell region (1000–1250eV). The main absorp-

tion features are from the He and Li like ion stages; the
He-like series K-shell absorption line series is present

between 1070 and 1170eV, with the Heβ line (1s3p →

1s2) at ∼1072eV and the 1s10p→1s2 line at ∼1080eV.

Li-like satellites to the Heβ line are present between
1030 and 1050eV, with the Hα (2p→1s) and Hβ ab-

sorption lines at 1022 and 1211eV. The overall sig-
nal strength follows the strength of the backlighting
Z-pinch continuum, peaking at 100ns.

1.0x108

1.0x109

1.0x1010

1.0x1011

 1000  1050  1100  1150  1200  1250

F
lu

x 
[ e

rg
 c

m
-2

 s
-1

 e
V

-1
 ]

Energy [eV]

100ns
105ns
110ns
115ns

Fig. 5 Absorption spectra in the neon K-shell region from

Spect3d

The energy region shown in fig. 5 contains features
from three ionisation stages that can be used to assist

diagnosis of the plasma from measured spectra. For ex-

ample, the relative strengths of features from different
ion stages are valuable for inferring the charge state

distribution whilst comparison of the detailed Li-like

satellite structure with computed results provides infor-

mation the accuracy of the atomic model. We note that
these features have been observed experimentally(1; 9)

and provide the basis for an analysis of the plasma prop-

erties currently in progress.

3 Conclusions

We have presented results from a modelling study of a

photoionised plasma with the aim of aiding the design
and understanding of a forthcoming experiment using

the Z-pinch facility at Sandia National Laboratories.

The aim of the experiment is to produce a well char-

acterised system that can be used to gain insight into

atomic-kinetic and radiative properties of photoionised
plasmas and provide a test bed for model calculations.

The modelling work presented helps us to identify and

quantify important experimental parameters such as

the radiation environment and the hydrodynamics of
the gascell and the interplay between them. Knowlege

gained from this study will be valuable for optimising

the experimental design and interpreting experimental

spectra.
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