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EQUIVARIANT QUANTUM SCHUBERT POLYNOMIALS

DAVE ANDERSON AND LINDA CHEN

Abstract. We establish an equivariant quantum Giambelli formula for
partial flag varieties. The answer is given in terms of a specialization
of universal double Schubert polynomials. Along the way, we give new
proofs of the presentation of the equivariant quantum cohomology ring,
as well as Graham-positivity of the structure constants in equivariant
quantum Schubert calculus.

1. Introduction

Classical Schubert calculus is concerned with the cohomology rings of
Grassmannians and (partial) flag varieties. In recent years, equivariant and
quantum versions of Schubert calculus have been developed. Key ingredients
in each of these theories are a presentations of the ring and “Giambelli
formulas” expressing the additive basis of Schubert classes in terms of the
presentation. For example, the ordinary cohomology of the Grassmannian
is generated by Chern classes, and the classical Giambelli formula in this
context states that a Schubert class is represented by a Schur polynomial,
which has a determinantal expression in terms of Chern classes.

The past fifteen years have seen great progress in modern Schubert calcu-
lus. Many authors—including Bertram, Buch, Ciocan-Fontanine, Coskun,
Kresch, Knutson, Mihalcea, Tamvakis, and Vakil—have proven results on
quantum cohomology, equivariant cohomology, K-theory, and, more re-
cently, equivariant K-theory and equivariant quantum cohomology. The
latter theory has connections with affine Schubert calculus: following ideas
of Peterson, the relationship between (equivariant) homology of affine Grass-
mannians and (equivariant) quantum cohomology of partial flag varieties
has been developed by Lapointe and Morse [LM] and Lam and Shimozono
[LaSh1, LaSh2]. The associated combinatorics of k-Schur functions imparts
further interest to the study of equivariant quantum Schubert calculus.

In this article, we study the equivariant quantum cohomology ring of a
partial flag variety; the main results give Giambelli formulas for Schubert
classes. Specifically, we define equivariant quantum Schubert polynomials
S
q
w(σ, t) (or more simply, Sq

w(x, t) in the case of complete flag varieties) as
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2 DAVE ANDERSON AND LINDA CHEN

specializations of Fulton’s universal double Schubert polynomials. This spe-
cialization is analogous to the specialization of universal (single) Schubert
polynomials to Fomin-Gelfand-Postnikov’s quantum Schubert polynomials
for the quantum cohomology of complete flag varieties [FGP]. In the case of
complete flags, our equivariant polynomial Sq

w(x, t) is equal to the special-
ization studied by Kirillov-Maeno under the name quantum double Schubert
polynomial [KiMa]. As a key feature of our point of view, we obtain a direct
relationship between universal double Schubert polynomials, which solve a
degeneracy locus problem, and their specialization to (equivariant) quantum
Schubert polynomials (cf. [Ch]).

Fix n = (0 < n1 < · · · < nm < n) and let Fl(n) denote the partial flag
variety parametrizing flags V1 ⊂ · · · ⊂ Vm ⊂ Cn, with dimVi = n−ni. Recall
that the Schubert classes σw are parametrized by certain permutations Sn ⊆
Sn (see §2.1). We write Fl(n) for the complete flag variety, corresponding
to the case n = {1, . . . , n− 1}.

To state the main theorem, we describe a specialization of the universal
double Schubert polynomial Sw(g, h), which is a polynomial in variables gi[j]
and hi[j] defined by Fulton [Fu]. Specialize these variables as follows:

(1)

gi[0] 7→ xi for 1 ≤ i ≤ n,

gni−1+1[ni+1 − ni−1 − 1] 7→ (−1)ni−ni−1+1qi for 1 ≤ i ≤ m,

hi[0] 7→ ti for 1 ≤ i ≤ n, and

gi[j], hi[j] 7→ 0 for all other i, j.

Writing σji for the ith elementary symmetric polynomial in the variables
xnj−1+1, . . . , xnj

, the equivariant quantum Schubert polynomial Sq
w(σ, t) is

the result of these specializations applied to Sw(g, h). (See §3 for more
background on universal Schubert polynomials and these specializations.)

Theorem 1.1. For any permutation w ∈ Sn, we have

σw = S
q
w(σ, t)

as classes in QH∗
T (Fl(n)).

As an example, the equivariant quantum Schubert polynomials for Fl(3) are
listed in Table 1.

Our approach is to adapt the methods in [Ch] to the equivariant sit-
uation. One of the main geometric tools used in previous approaches to
quantum Giambelli formulas (cf. [Be, CF2, Ch] is a moving lemma for quot
schemes which relies on general position arguments not immediately avail-
able in equivariant cohomology. To surmount this technical difficulty, we
use the “mixing group” action introduced in [An] to prove an equivariant
moving lemma. The new equivariant moving lemma proved in §6 should be
of independent interest; we use a version to prove positivity of equivariant
Gromov-Witten invariants in [AC].



EQUIVARIANT QUANTUM SCHUBERT POLYNOMIALS 3

w S
q
w(x, t)

123 1
213 x1 − t1
132 x1 + x2 − t1 − t2
231 x1 x2 + q1 − (x1 + x2) t1 + t21
312 x21 − q1 − x1 (t1 + t2) + t1 t2
321 (x1 − t2)

(
x1 x2 + q1 − (x1 + x2) t1 + t21

)

Table 1. Equivariant quantum Schubert polynomials for
Fl(3).

For the present paper, the main consequence of the moving lemmas is
that the equivariant quantum structure constants can be computed on quot
schemes (Proposition 4.2). This allows us to use the inductive method of
[Ch] to prove the equivariant quantum Giambelli formula (§7). We expect it
to have further applications, since it also allows one to use the apparatus of
equivariant localization on quot schemes, which is well understood, thanks
to [BCS].

Our results immediately recover the presentation of the equivariant quan-
tum ring presentation computed in [Kim] (see Corollary 7.3), the equivariant
quantum Giambelli formula for Grassmannians in terms of factorial Schur
polynomials in [Mi3], and the equivariant Giambelli formula for flag vari-
eties in terms of double Schubert polynomials in [KnMi]. In addition, our
approach recovers the Graham-positivity result in [Mi2]: as polynomials in a
natural choice of variables, the structure constants for equivariant quantum
multiplication have nonnegative coefficients (Corollary 6.3).

Like their non-equivariant counterparts, the equivariant quantum Schu-
bert polynomials possess a stability property: the same polynomial rep-
resents a Schubert class σw of codimension ℓ(w), independently of which
flag variety Fl(n) it is in, for sufficiently large n. In §8, we give a precise
statement to this effect. A useful computational consequence is that equi-
variant quantum products are computed (on the nose, not up to an ideal)
by products of Schubert polynomials, at least for sufficiently large n. We in-
clude some examples, using the equivariant quantum Schubert polynomials
to produce multiplication tables for QH∗

TFl(n) (for small n).
After the results presented here were announced, the equivariant quan-

tum Giambelli formula was proved by Lam and Shimozono, using different
methods [LaSh3].

Acknowledgements. This project began in March 2010 at the AIM work-
shop on Localization Techniques in Equivariant Cohomology, and we thank
William Fulton, Rebecca Goldin, and Julianna Tymoczko for organizing that
meeting. We also thank Sara Billey for helpful comments, and Anders Buch
for sharing Maple code which we modified to compute equivariant quantum
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products. DA is grateful for the hospitality of the Mathematics Department
at the University of British Columbia, where much of this work took place.

2. Background and notation

2.1. Flag varieties. We recall some basic facts about partial flag varieties.
Let

n = {0 = n0 < n1 < · · · < nm < nm+1 = n}

be a strictly increasing sequence of integers, and let V = Cn. The m-
step partial flag variety Fl(n) = Fl(n1, . . . , nm;V ) parametrizes flags V• =
(Vm ⊂ · · · ⊂ V1 ⊂ V ), with dimVi = n−ni; equivalently, Fl(n) parametrizes
successive quotients V/Vi of dimension ni. This is a smooth projective va-
riety of dimension dimFl(n) =

∑m
i=1 ni(ni+1 − ni), and it comes equipped

with a universal sequence of quotient bundles:

VF l(n) = Qm+1 ։ · · · ։ Q2 ։ Q1,

where Qi is the vector bundle of rank ni whose fiber over V• is V/Vi. When
n = {1, 2, . . . , n− 1}, we obtain the complete flag variety, which we write as
Fl(Cn).

These bundles give generators for cohomology ring of Fl(n), as follows.
For 1 ≤ j ≤ m + 1, let xnj−1+1, . . . , xnj

be the Chern roots of the bundle
ker(Qj → Qj−1). For 1 ≤ i ≤ nj − nj−1, set

(2) σji = ci(ker(Qj → Qj−1));

this is the ith elementary symmetric polynomial in xnj−1+1, . . . , xnj
. Since

the Chern class ck(Qj) is symmetric in xnj−1+1, . . . , xnj
for every 1 ≤ j ≤ l,

it can be written as a polynomial in σji , which we denote by ẽk(l)(σ) or ẽk(l).

Note that when Fl(n) is the complete flag variety Fl(Cn), σji is defined for

i = 1, and in that case, σj1 = xj.

Theorem 2.1. The cohomology ring of Fl(n) is presented as

H∗(Fl(n)) ∼= Z[σ11 , . . . , σ
1
n1
, . . . , σm+1

1 , . . . , σm+1
n−nm

]/I,

where I is the ideal (ẽ1(m+ 1), . . . , ẽn(m+ 1)).

In the special case of the complete flag variety Fl(Cn), this gives

H∗(Fl(Cn)) ∼= Z[x1, . . . , xn]/(e1(x), . . . , en(x))

where xi = c1(ker(Qj → Qj−1)) and ei(x) is the ith elementary symmetric
polynomial in x1, . . . , xn for 1 ≤ i ≤ n .

2.2. Permutations and Bruhat order. The cohomology ring H∗(Fl(n))
has a Z-basis of Schubert classes, indexed by permutations in the set

Sn := {w ∈ Sn : w(i) < w(i+ 1) if n− i 6∈ n}.

If Sn denotes the subgroup of Sn generated by adjacent transpositions (i, i+
1) for n− i 6∈ n, then Sn is a set of coset representatives for Sn/Sn. (For the
complete flag variety Fl(Cn), so n = {1, 2, . . . , n− 1}, we have Sn = Sn.)
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For any permutation w ∈ Sn, define

rw(p, q) = #{i ≤ p |w(i) ≤ q}.

This is the rank of the upper-left p× q submatrix of the permutation matrix
corresponding to w (which has 1’s in positions (i, w(i)) and 0’s elsewhere).

The Bruhat order on Sn is a partial order which may be defined by v ≤ w
iff rv(p, q) ≥ rw(p, q) for all 1 ≤ p, q ≤ n. The length of w is the number

ℓ(w) = #{i < j |w(i) > w(j)}.

The Bruhat order is ranked by length: v ≤ w implies ℓ(v) ≤ ℓ(w). There is
a unique permutation of greatest length, denoted w◦; it is given by w◦(i) =
n+ 1− i.

The subset Sn ⊆ Sn is also characterized as the set of minimal-length
coset representatives for Sn/Sn. Given any permutation w ∈ Sn, one gets
an element w of Sn by taking the representative of wSn of smallest length;
concretely, this means sorting the entries of each block [w(ni + 1), w(ni +
2), . . . , w(ni+1)] into increasing order.

Bruhat order induces a partial order on the subset Sn, and the unique
permutation of greatest length in Sn is w◦ := w◦, given explicitly by

w◦ = [nm+1, nm+2, . . . , n, nm−1+1, nm−1+2, . . . , nm, . . . , n2, 1, 2, . . . , n1].

Its length is ℓ(w◦) = dimFl(n) =
∑m

i=1 ni(ni+1 − ni).

2.3. Schubert cells and Schubert varieties. Fix a basis {e1, . . . , en} for
V = C

n. The standard flag E• is defined by Ei = span{e1, . . . , ei} and the

opposite flag Ẽ• is defined by Ẽi = span{en, en−1, . . . , en−i+1}. The Schubert
varieties in Fl(n) can be described in several ways. Fixing the standard flag
E•, we define Ωw = Ωw(E•) ⊆ Fl(n) by

Ωw = {V• ∈ Fl(n) | rk(Eq → C
n/Vp) ≤ rw(np, q) for all 1 ≤ q ≤ n, np ∈ n}

This is the closure of the Schubert cell

Ω◦
w = {V• ∈ Fl(n) | rk(Eq → C

n/Vp) = rw(np, q) for all 1 ≤ q ≤ n, np ∈ n},

which is isomorphic to A
dimF l(n)−ℓ(w). Replacing E• with the opposite flag

Ẽ•, we obtain the opposite Schubert varieties Ω̃w and the opposite Schubert

cells Ω̃◦
w. Here, the Bruhat order on Sn is identified with the order induced

by inclusions of Schubert varieties: v ≤ w iff Ωv ⊇ Ωw iff Ω̃v ⊆ Ω̃w.
Regarding E• as a flag of trivial vector bundles on Fl(n), the Schubert

variety may be defined equivalently as the degeneracy locus of points x ∈
Fl(n) where rkx(Eq → Qp) ≤ rw(np, q), and similarly for the opposite
Schubert varieties.

The Schubert cells give an (affine) cell decomposition of the partial flag
variety, so the classes of Schubert varieties form a linear basis for the coho-
mology ring of Fl(n):

H∗Fl(n) =
⊕

w∈Sn

Z · [Ωw].
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Since Ωw has codimension ℓ(w), its class lies in H2ℓ(w)Fl(n).
The Schubert classes [Ωw] are written in terms of this presentation as

Schubert polynomials Sw(x) [BGG][D][LaSch]. For the moment, consider
the complete flag variety Fl(n). Let w◦ be the longest permutation in Sn,
and write w = w◦si1 . . . sik , where si is the simple transposition (i, i + 1)
and k =

(
n
2

)
− ℓ(w). For 1 ≤ i < n, let ∂i be the divided difference operator

acting on Z[x1, . . . , xn] by

(3) ∂iP =
P (x1, . . . , xn)− P (x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xn)

xi − xi+1
.

Then the Schubert polynomials are defined by

Sw(x) = ∂ik · · · ∂i1(x
n−1
1 xn−2

2 . . . xn−1).

The Giambelli formula gives [Ωw] in terms of the presentation. For the
complete flag variety Fl(Cn), we have for any w ∈ Sn,

[Ωw] = Sw(x) as classes in H
∗(Fl(Cn)).

For w ∈ Sn, Sw(x) can be written as a polynomial in the classes σji
from Theorem 2.1. We write this polynomial as Sn

w(σ), and for partial flag
varieties, we have

Theorem 2.2. For any w ∈ Sn, [Ωw] = S
n
w(σ) as classes in H∗(Fl(n)).

The Schubert cells may also be described as orbits, and we will need
this point of view. The group GLn acts on Fl(n) via its action on C

n,
and the parabolic subgroup P of staircase (block upper-triangular) matrices
fixes the standard flag. This gives rise to an isomorphism Fl(n) ∼= GLn/P
with a decomposition into Schubert cells indexed by permutations w ∈ Sn.
Given w ∈ Sn, let p(w) ∈ Fl(n) be the flag (Fm ⊂ · · · ⊂ F1 ⊂ V ) with
Fi = span{ew(n), ew(n−1), . . . , ew(ni+1)}. We have

Ω◦
w = B · p(w)

and

Ω̃◦
w = B̃ · p(w◦w),

where B and B̃ are the groups of upper- and lower-triangular matrices,

respectively. The cells Ωw and Ω̃w◦w intersect transversally in the point
p(w), and it follows from this (together with dimension considerations) that

the classes [Ω̃w◦w] form a Poincaré dual basis: writing π : Fl(n) → pt,

π∗([Ωw] · [Ω̃w◦v]) = δw,v.

(In fact, [Ω̃w] = [Ωw] in H
∗Fl(n), but since this does not hold in equivariant

cohomology, we prefer to use distinct notation.) To emphasize this duality,
we often write w∨ = w◦w. Note that ℓ(w∨) = dimFl(n)− ℓ(w).
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2.4. Equivariant cohomology. Let T ∼= (C∗)n be a torus. One can find a
contractible space ET on which T acts freely, and the quotient BT = ET/T
is then unique up to homotopy. The equivariant cohomology of a space X
equipped with a T -action is defined by

H∗
TX = H∗(ET ×T X),

where Y ×TZ denotes the quotient of Y ×Z by the relation (y·t, z) ∼ (y, t·z).
The map ET ×T X → BT makes H∗

TX an algebra over

ΛT = H∗
T (pt) = H∗(BT ) ∼= Z[t1, . . . , tn].

The spaces ET are infinite-dimensional, but one can find finite-dimensional
algebraic varieties which serve as “approximations.” To describe these,
we will need to pay attention to the isomorphism T ∼= (C∗)n. Let M =
Hom(T,C∗) be the character group of T , so M ∼= Z

n, and there is the
standard basis t1, t2, . . . , tn. We will also use the positive basis

α1, . . . , αn−1, αn

for M , where αi = ti − ti+1 for i < n, and αn = tn. (The reason for this
choice will become evident in §5.)

Now take E to be (CNr{0})n, for m≫ 0. With T acting on the n factors
via the positive basis, we set

B = E/T = (PN−1)n.

These spaces approximate ET → BT in the sense that

Hk(E ×T X) = Hk(ET ×T X) = Hk
TX

for all sufficiently small k, and there are compatible inclusion maps as
N → ∞. See [EG] for details on approximation spaces in equivariant coho-
mology; the key point for our purposes is that one can carry out any given
computation in H∗

TX using H∗(E×T X).
As a matter of notation, given a T -spaceX, we will denote the correspond-

ing approximation space by a bold letter X = E×TX, always understanding
some fixed N ≫ 0.

We will also need to consider certain linear subspaces of B. Specifically,
for each integer j with 0 ≤ j ≤ N−1, fix transverse linear subspaces PN−1−j

and P̃
j inside P

N−1, and for a multi-index of such integers J = (j1, . . . , jn),
set

B
J = P

N−1−j1 × · · · × P
N−1−jn and BJ = P̃

j1 × · · · × P̃
jn .

Thus dimBJ = codim(BJ ,B) = |J | = j1 + · · · + jn. These subspaces carry
the effective equivariant classes in H∗

T (pt); hence their significance:

[BJ ] = (−α1)
j1 · · · (−αn)

jn in H∗
B = H∗

T (pt).(4)

Finally, let XJ and XJ denote the preimages of BJ and BJ , respectively,
under the projection X → B.
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Let πB be the map B → pt. Note that any polynomial c(t) ∈ H∗
T (pt) =

Z[t1, . . . , tn] can be written as

(5) c(t) =
∑

J

cJ (−α1)
j1 · · · (−αn)

jn ,

where cJ = πB∗ (c(t) · [BJ ]). (This is just Poincaré duality on B.)
In particular, we have:

Lemma 2.3. Suppose c(t) = πT∗ (σ), for some class σ ∈ H∗
TX, where

πT∗ : H∗
TX → H∗

T (pt) is the equivariant pushforward. Identify πT with the

corresponding projection X → B, and let πX be the map X → pt. Then the
coefficient cJ appearing in (5) is equal to πX∗ (σ · [XJ ]).

In the present context, T ∼= (C∗)n ⊂ GLn is the maximal torus of diagonal
matrices, acting on Fl(n). The equivariant cohomology of the complete flag
variety has a well-known presentation

H∗
TFl(C

n) = ΛT [x1, . . . , xn]/(e1(x)− e1(t), . . . , en(x)− en(t)),

where xi = cT1 (ker(Qi → Qi−1)), and ei is the ith elementary symmetric
function. More generally, as in (2), define

(6) σji = cTi (ker(Qj → Qj−1)).

For the partial flag variety Fl(n), we have

H∗
TFl(n) = ΛT [σ

1
1 , . . . , σ

m+1
n−nm

]/(ẽ1(m+ 1)) − e1(t), . . . , ẽn(m+ 1)− en(t)).

Moreover, the equivariant classes of Schubert varieties form a Λ-basis for
H∗
TFl(n), and for essentially the same reason as in the classical case, the

classes of opposite Schubert varieties are the Poincaré dual basis:

(7) πT∗ ([Ωw]
T · [Ω̃v∨ ]

T ) = δw,v

in Λ. (This is a stronger statement, since a priori, these classes could pair
to a nonzero polynomial in t.)

The equivariant Giambelli formula is given by double Schubert polynomials
Sw(x, t), defined by

Sw(x, t) =
∑

u,v

(−1)ℓ(v)Su(x)Sv(t),

where the sum is over u, v ∈ Sn+1 such that v−1u = w and ℓ(u)+ℓ(v) = ℓ(w).
A key property of the double polynomials is that ∂tiSw(x, t) = −Ssiw(x, t)
whenever ℓ(siw) < ℓ(w), where ∂ti is the divided difference operator (defined
in (3)) applied to the t variables.

The equivariant Giambelli formula gives [Ωw]
T in terms of the presenta-

tion (see, e.g., [KnMi]). For the complete flag variety Fl(Cn), we have

[Ωw]
T = Sw(x, t) in H

∗
T (Fl(C

n)).

For w ∈ Sn, Sw(x, t) can be written as a polynomial in σji and ti, which we
write as Sn

w(σ, t), and for partial flag varieties, we have
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Theorem 2.4. For any w ∈ Sn, [Ωw]
T = S

n
w(σ, t) as classes in H

∗
T (Fl(n)).

One can realize Fl(n) = E×T Fl(n) as a flag bundle Fl(n;E) → B, for a
vector bundle E on B. Specifically, let pri : B → PN−1 be the projection on
the ith factor, and let Li = pr∗iO(−1). (One has ti = c1(Li) in H2

T (pt) =
H2(B).) Then set Ei = L1⊕L2⊕· · ·⊕Li and E = En, so we obtain a flag of
vector bundles E•. The equivariant Schubert class [Ωw]

T is identified with
the class of the degeneracy locus Ωw ⊆ Fl(E).

2.5. Quantum cohomology. The (small) quantum cohomology ring QH∗Fl(n)
is a commutative and associative graded algebra over Z[q] = Z[q1, . . . , qm],
where qi is a parameter of degree ni+1 − ni−1. As a module, QH∗Fl(n) is
simply Z[q]⊗Z H

∗Fl(n), so it has a Z[q]-basis of Schubert classes σw:

QH∗Fl(n) =
⊕

w∈Sn

Z[q] · σw.

The quantum product is a deformation of the usual cup product. For per-
mutations u, v, define a product by

(8) σu ⋆ σv =
∑

w,d

qd cw,du,v σw,

where d ranges over (n − 1)-tuples of nonnegative integers. The quantum

Littlewood-Richardson coefficient cw,du,v is a three-point Gromov-Witten in-
variant ; it may be interpreted informally as the number of maps f : P1 →
Fl(n) of degree d such that f(0), f(1), and f(∞) lie in general trans-
lates of Ωu, Ωv, and Ωw∨, respectively. (A map has degree d if f∗[P

1] =
d1σs∨n1

+ · · ·+ dmσs∨nm
. Since the classes σs∨ni

form a basis for H2Fl(n), this

is well-defined.)

The precise definition of cw,du,v is usually phrased in terms of the Kontsevich
moduli space of stable maps. In order to set up notation, we sketch the
construction here. (See, e.g., [FP] for details.) There is a smooth, proper
Deligne-Mumford stack

M r(d) =M0,r(Fl(n),d),

called the (Kontsevich) space of stable maps, which parametrizes data
(f,C, {p1, . . . , pr}), where C is a genus-zero curve with marked points p1, . . . , pr,
and f : C → Fl(n) is a map of degree d, and a certain stability condition
is imposed. The space of stable maps has dimension equal to dimFl(n) +∑m

i=1 di(ni+1 − ni−1) + r − 3, and its coarse moduli space (with which we
will tacitly work) is a Cohen-Macaulay projective variety.

This space of stable maps comes with natural evaluation morphisms

evi :M r(d) → Fl(n),

for i = 1, . . . , r, defined by sending (f,C, {pj}) to f(pi). It also has a
forgetful morphism

f :M r(d) →M0,r
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to the space of stable curves, which is a smooth projective variety of dimen-
sion r − 3.

The quantum product is defined using M3(d). Write π :M3(d) → pt for
the map to a point. Now one defines

(9) cw,du,v = π∗((ev
∗
1σu) · (ev

∗
2σv) · (ev

∗
3σw∨)),

where α · β denotes the usual cup product in H∗M3(d).

2.6. Equivariant quantum cohomology. When a torus T acts on Fl(n),
there is an induced action on M r(d) = M 0,r(Fl(n),d), so one can define
a quantum deformation of H∗

TFl(n) analogously to the classical case. Let

πT∗ : H∗
TM3(d) → H∗

T (pt) be the equivariant pushforward. One defines a
product on QH∗

TFl(n) = Λ[q]⊗Λ H
∗
TFl(n) by

σu ◦ σv =
∑

w,d

qd cw,du,v (t)σw,

where the coefficient is a three-point equivariant Gromov-Witten invariant

cw,du,v (t) = πT∗ (ev
∗
1σu · ev

∗
2σv · ev

∗
3σ̃w∨).

(In contrast to the non-equivariant case, it is important to use the opposite
Schubert class σ̃w∨ as the third insertion, rather than σw∨.)

As before, this defines an associative product [Kim]. Following [Mi2, §5],

we will call the polynomials cw,du,v equivariant quantum Littlewood-Richardson
(EQLR) coefficients, and use this term also for the coefficients defined by
associativity:

σv1 ◦ σv2 ◦ · · · ◦ σvr =
∑

w,d

qd cw,dv1,...,vr
(t)σw.

The proof of associativity given in [Kim, §3.3] shows that the EQLR coeffi-
cients may be described equivalently as

(10) cw,dv1,...,vr
(t) = πT∗ (ev

∗
1σv1 · · · ev

∗
rσvr · ev

∗
r+1σ̃w∨ · f∗[pt]),

where f : M r+1(d) → M0,r+1 is the forgetful map and [pt] ∈ H∗
TM0,r+1 is

the class of a point, with T acting trivially on the space of stable curves.

Remark 2.5. The (r+1)-point equivariant Gromov-Witten invariant is de-
fined via r + 1 evaluation maps from M0,r+1(Fl(n),d) to Fl(n) as

πT∗ (ev
∗
1σv1 · · · ev

∗
rσvr · ev

∗
r+1σ̃w∨).

While the EQLR coefficients for r = 2 agree with the corresponding three-

point invariants, in general cw,dv1,...,vr 6= πT∗ (ev
∗
1σv1 · · · ev

∗
rσvr · ev

∗
r+1σ̃w∨). The

situation is the same in the non-equivariant case; see, e.g., [FP, §10].

A presentation of the ring QH∗
TFl(n), specializing to one for QH∗Fl(n),

is given in [Kim, Theorem 2]. We will give a different proof of this in
Corollary 7.3.



EQUIVARIANT QUANTUM SCHUBERT POLYNOMIALS 11

3. Universal Schubert polynomials

3.1. Definitions. Universal double Schubert polynomials were introduced
in [Fu] as the solution to a certain degeneracy locus problem. They specialize
to double Schubert polynomials as well as to quantum Schubert polynomials
for complete and partial flag varieties [FGP][CF2]. To describe the universal
double Schubert polynomials Sw(c, d), for w ∈ Sn, we first give two formu-
lations of universal (single) Schubert polynomials: Sw(c) and Sw(g). The
first form, denoted Sw(c), is a polynomial in independent variables ck(l) of
degree k, for 1 ≤ k ≤ l ≤ n; we set c0(l) = 1 and ck(l) = 0 when k < 0 or
k > l. The second form, denoted Sw(g), is a polynomial in variables gi[j]
for i, j ≥ 0, and i+ j ≤ n, with gi[j] of degree j + 1.

For w ∈ Sn+1, the classical Schubert polynomial Sw(x) can be written
uniquely as

Sw(x) =
∑

ak1...knek1(1) · · · · · ekn(n),

where the sum ranges over sequences (k1, . . . , kn) with 0 ≤ kp ≤ p and∑
kp = ℓ(w), and where ek(l) := ek(x1, . . . , xl) is the kth elementary sym-

metric polynomial in the variables x1, . . . , xl. Define the universal Schubert
polynomial by

(11) Sw(c) =
∑

ak1...knck1(1) · · · · · ckn(n).

When ck(l) is specialized to ek(l), the polynomial Sw(c) becomes the clas-
sical Schubert polynomial Sw(x).

The second formulation of universal Schubert polynomials Sw(g) is as
follows. Label the vertices of the Dynkin diagram (An) by x1, . . . , xn, and
label the edges g1[1], . . . , gn−1[1], where gi[1] connects xi and xi+1. Now
denote by gi[j] the path covering the j +1 consecutive vertices xi, . . . , xi+j ,

and define Elk(g) to be the sum of all monomials in paths gi[j] covering
exactly k of the verticies x1, . . . , xl with no vertex covered more than once.
When the variables g are understood, we may simply write Elk.

Alternatively, consider the l × l matrix Ml with ga[b − a] in the (a, b)th
entry for 1 ≤ a ≤ b ≤ l, −1 in the (a + 1, a) entries below the diagonal,
and zero elsewhere. Define a polynomial Elk(g) in the variables gi[j] as the

coefficient of T k in the determinant of Ml+ IT , setting gi[0] = xi. Both this
and the description of Elk in the previous paragraph are equivalent to the
inductive definition:

(12) Elk(g) = El−1
k (g) +

k−1∑

j=0

El−j−1
k−j−1(g) gl−j [j].

The universal Schubert polynomialSw(g) is obtained by substituting ck(l) =
Elk(g) into the expression (11) for Sw(c).
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We can now define universal double Schubert polynomials in variables ck(l)
and dk(l) by

(13) Sw(c, d) =
∑

u,v

(−1)ℓ(v)Su(c)Sv(d),

where the sum is over u, v ∈ Sn+1 such that v−1u = w and ℓ(u)+ℓ(v) = ℓ(w).
These polynomials can also be written as Sw(g, h), using variables gi[j]
and hi[j] obtained by substituting ck(l) = Elk(g) and dk(l) = Elk(h) into
Sw(c, d). Upon setting hi[0] = yi and hi[j] = 0 for all j > 0, Sw(c, d)
specializes to polynomials Sw(c, y); this is equivalent to specializing dk(l)
to the elementary symmetric polynomial ek(y1, . . . , yl).

For the purposes of this paper, we will focus on the specialized double
Schubert polynomial Sw(c, y) and its alternative form Sw(g, y), obtained
by the substitution ck(l) = Elk(g) into Sw(c, y). These specializations can
be computed inductively from a “top” polynomial, using divided difference
operators, as in the classical case. Specifically, for the longest permutation
w◦ in Sn+1, we have

Sw◦
(c, y) =

n∏

i=1




i∑

j=0

ci−j(i)(−yn+1−i)
j


 ,

and Ssiw(c, y) = −∂yiSw(c, y) whenever ℓ(siw) < ℓ(w), where ∂yi is the
divided difference operator applied to the y variables [Fu, eqs. (7) and (8)];
see also [CF2, pp. 502–503] and [KiMa]. (In a similar fashion, one can also
compute the unspecialized versions inductively, but the analogues of divided
difference operators are a little more complicated.)

When ck(l) is also specialized to ei(x1, . . . , xl), Sw(c, d) becomes the clas-
sical double Schubert polynomial Sw(x, y).

Example 3.1. For w = 312, we have

S312(x) = x21 = x1(x1 + x2)− x1x2 = e1(1)e1(2) − e2(2)

S312(c) = c1(1)c1(2)− c2(2)

S312(g) = x1(x1 + x2)− (x1x2 + g1[1])

S312(c, d) = c1(1)c1(2)− c2(2)− c1(2)d1(2)− d2(2)

Remark 3.2. The inductive relation (12) can be inverted to express the
variables gi[j] as polynomials in ck(l). In other words, the variables ck(l) and
gi[j] generate the same polynomial rings, Z[g] = Z[c]. Therefore Z[g, y] =
Z[c, y]. For 1 ≤ k ≤ nl, the cyclic permutation αk,l := snl−k+1 · · · snl

,
has universal (single) Schubert polynomial Sαk,l

(c) = ck(l), and therefore
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Z[g, y] = Z[Sαk,l
(c), y]. Moreover, the corresponding universal double Schu-

bert polynomials can be written

Sαk,l
(c, y) =

∑

0≤k′≤k

(−1)k−k
′

Sαk′,l
(c)Ssnl−k+1···snl−k′

(y)

= ck(l) +
∑

0≤k′<k

(−1)k−k
′

ck′(l)hk−k′(y),

where hk(y) is the kth complete symmetric polynomial in y1, . . . , yn. There-
fore we can recursively write each ck(l) in terms of polynomials Sαk,l

(c, y)
and variables y, and therefore Z[g, y] = Z[c, y] = Z[Sαk,l

(c, y), y].
In particular, each gi[j] can be written as a polynomial in the Sαk,l

(c, y)
and y1, . . . , yn, with k ≤ j + 1.

Remark 3.3. Several properties of certain of the polynomials Sw(c, y) will
be useful in studying partial flag varieties. Let n and Sn be as in Section
2. We define polynomials S

n
w(g, y) as follows. For a permutation w ∈

Sn, let S
n
w be the result after setting gi[0] = xi and gi[j] = 0 if j > 0

and i + j 6= np for some p. An alternative definition of S
n
w is given by

performing the substitutions ck(l) → ck(np) for l ∈ [np, np+1) into Sw(c, y)
and then performing the above substitutions for the gi[j]. The proof of [Fu,
Proposition 4.3] shows that these two constructions yield the same Sn

w(g, y).

Remarks 3.2 and 3.3 yield the following useful lemma.

Lemma 3.4. Each gi[j] can be written as a polynomial in Sw(g, y) and
y1, . . . , yn, with ℓ(w) ≤ j+1. Moreover, when i+ j ∈ n, gi[j] can be written
as a polynomial in S

n
w(g, y) and y1, . . . , yn, where w is a permutation in Sn

with ℓ(w) ≤ j + 1.

3.2. Degeneracy locus formula. Fulton proves that universal double Schu-
bert polynomials give the answer to a degeneracy locus problem. While not
explictly stated in [Fu, Theorem 3.7], the formula holds equivariantly.

Let T act on an algebraic Cohen-Macaulay scheme X, and consider maps
of equivariant vector bundles

E1 → · · · → En → Fn → · · · → F1,

where Ei and Fi are of rank i. Let Ωw be the degeneracy locus

Ωw = {x ∈ X| rankx(Eq → Fp) ≤ rw(p, q) for all 1 ≤ p, q ≤ n},

and let Sw(c
T (F•), c

T (E•)) be the image of Sw(c, d) by specializing ck(l) to
the equivariant Chern class cTk (Fl), and specializing dk(l) to c

T
k (El).

Theorem 3.5. For w ∈ Sn, we have [Ωw] = Sw(c
T (F•), c

T (E•)) in H
∗
T (X)

whenever codimX(Ωw) = ℓ(w).

Proof. Apply [Fu, Theorem 3.7] to the corresponding degeneracy locus on
the mixing space X. �
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We will be interested in the following situation. For a sequence of integers
n = {0 < n1 < · · · < nm < n}, consider maps of vector bundles

(14) E1 → · · · → En → Fm → · · · → F1

where rank(Fp) = np, and Ei ∼= C
i ⊗ OX is trivial, but has the nontrivial

equivariant structure coming from the diagonal action of T on C
n. Let Ωw

be the degeneracy locus

Ωw = {x ∈ X| rankx(Eq → Fp) ≤ rw(np, q) for all p, q}.

For w ∈ Sn, let S
n
w(c

T (F•), t) denote the result of specializing ck(np) to
cTk (Fp) in S

n
w(c, t). We obtain

Corollary 3.6. Given maps as in (14), for w ∈ Sn, we have [Ωw]
T =

S
n
w(c

T (F•), t) in H∗
T (X).

Fix n. As in Remark 3.2, the polynomial ring generated by ck(np) (for
1 ≤ k ≤ np and 1 ≤ p ≤ m) is equal to the polynomial ring generated by
gi[j] (for i+ j = np and 1 ≤ p ≤ m). Using the corresponding identification
Z[c, y] = Z[g, y], consider the map b : Z[c, y] → H∗

TX defined by ck(np) 7→

cTk (Fp) and yi 7→ ti. We define classes Qi[j] in H
2(j+1)
T (X) by

(15) Qi[j] = b(gi[j]).

With this notation, we can write [Ωw]
T = S

n
w(Q, t) in H

∗
T (X). Since cTk (Fl)

is symmetric in xnj−1+1, . . . , xnj
for every 1 ≤ j ≤ l, it can be written as a

polynomial in variables σji and Qi[j], for i + j = np and 1 ≤ p ≤ m. We

denote this polynomial by Ẽlk(σ) or Ẽ
l
k(Q).

With this Ẽlk(Q), and Qi[j] as defined in (15), we have the following:

Lemma 3.7. Given equivariant maps of vector bundles Fm+1 → · · · → F1

with rank(Fi) = ni and ck(Fl) = Ẽlk(Q), for 1 ≤ i ≤ nl+1 − nl, we have

cTi (ker(Fl+1 → Fl)) = Qnl+1−i+1[i− 1]

for nl+1 − nl < i ≤ nl+1 − nl−1.

Moreover, if Fb → Fa is a surjection of vector bundles for some a < b,
then Fb′ → Fa is also a surjection of bundles for a ≤ b′ ≤ b. From Lemma
3.7, [Ch, Proposition 6.2], and Remark 3.3, we obtain

Lemma 3.8. If Fb → Fa is a surjection of vector bundles, then Qi[j] = 0
for all i < na + 1 ≤ i+ j ≤ nb.

For 1 ≤ a ≤ b, define Hb
a(g) to be the polynomial obtained by the substi-

tution ck(l) = Elk(g) into det (c1+j−i(b+ j − 1))1≤i,j≤a. This is the universal

analogue of the complete symmetric polynomial ha(x1, . . . , xb).

Remark 3.9. For 1 ≤ k ≤ n − nl, write βk,l for the cyclic permutation
βk,l := snl+k−1 · · · snl

. This is a Grassmannian permutation with descent at
nl (of length k), so by Proposition 4.4 of [Fu], its (single) universal Schubert
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polynomial is Sβk,l(c) = det (c1+j−i(nl + j − 1))1≤i,j≤k, so that Sβk,l(g) =

Hnl

k (g). Note that αk,l and βk,l are permutations in Sn, and by Remark 3.3,
for 0 ≤ k ≤ nl+1 − nl, we have S

n

βk,l
(c) = det (c1+j−i(nl))1≤i,j≤k.

Moreover, given maps of vector bundles Fm+1 → · · · → F1 with rank(Fi) =
ni as above, for 0 ≤ k ≤ nl+1−nl, by expanding det (c1+j−i(nl))1≤i,j≤k along

the top row, we obtain inductively that Sn

βk,l
(c) = (−1)kck(−Fl).

4. Quot schemes and spaces of maps

Recall that the EQLR coefficients are defined using the Kontsevich com-
pactification of the space of maps f : P1 → Fl(n) of degree d. Using the fact
that a degree-d map P1 → Fl(n) corresponds to successive quotient bundles
of V ∗

P1 = V ∗ ⊗ OP1 of rank ni and degree di, there is another compactifi-
cation of Mr+1(d). The hyperquot scheme Qd parametrizes flat families of
successive quotient sheaves of V ∗

P1 of rank n − ni and degree di, generaliz-
ing Grothendieck’s Quot scheme. (We consider quotients of V ∗ rather than
of V for technical reasons.) It is a smooth, projective variety of dimen-
sion dimFl(n) +

∑
di(ni+1 −ni−1), and comes with a universal sequence of

quotient sheaves on P
1 × Qd

V ∗
P1×Qd

= Bm+1 ։ · · · ։ B2 ։ B1,

where Bi has rank n − ni and relative degree di. The space of maps
M(d) = M3(d) embeds in Qd as the largest (open) subscheme such that
each restriction Bi|P1×M(d) is locally free.

To avoid torsion, we prefer to work with the locally free sheaves Ai :=
ker(V ∗

P1×Qd

→ Bi) which are locally free of rank ni and degree −di. There

is a sequence

A1 → A2 → · · · → Am+1 = V ∗
P1×Qd

The tradeoff here is that although the map Ai → Ai+1 is an inclusion of
sheaves, it is not necessarily an inclusion of vector bundles (i.e., the cokernel
is not locally free in general).

Dualizing again, and regarding the standard flag E• as a flag of trivial
vector bundles on P

1 × Qd, we have a sequence

(16) E1 →֒ · · · →֒ En−1 →֒ En = VP1×Qd
= A

∗
m+1 → A

∗
m → · · · → A

∗
1 .

Note that the maps A ∗
i+1 → A ∗

i are not necessarily surjective.

Define Dw ⊆ P1×Qd as the degeneracy locus associated to this sequence:

(17) Dw = {x | rkx(Eq → A
∗
p ) ≤ rw(p, q) for all 1 ≤ q ≤ n, np ∈ n}.

Fix a point z ∈ P
1, and let Dw(z) = Dw ∩ ({z} ×Qd) be the corresponding

closed subscheme of Qd. Define D̃w and D̃w(z) similarly, using the opposite

flag Ẽ• in place of E•.
For a point z ∈ P1, there is an evaluation map evz : M(d) → Fl(n),

defined by the sequence of quotient sheaves A ∗
i restricted to M(d) = {z} ×
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M(d). We write Ωw(z) = ev−1
z (Ωw) and Ω̃w(z) = ev−1

z (Ω̃w). From the
definitions, one sees

(18) Ωw(z) = Dw(z) ∩M(d) and Ω̃w(z) = D̃w(z) ∩M(d).

The group GLn = GL(V ) acts on Qd via its action on V : a quotient
sheaf of VP1 is sent to the quotient obtained by precomposing with an auto-
morphism of V . The above constructions are all equivariant for appropriate
subgroups; in particular, we set

µw = [Dw(z)]
T and µ̃w = [D̃w(z)]

T

in H∗
T (Qd). Since T acts trivially on the P1 factor of P1 × Qd, these equi-

variant classes are independent of the choice of z.
Write Al for the restriction of Al to {z}×Qd. (The choice of point z ∈ P

1

will usually be irrelevant.) The degeneracy locus formula of Corollary 3.6
yields the following:

Proposition 4.1. Setting ck(l) = cTk (A
∗
l ), we have µw = S

n
w(c, t) in H

∗
TQd.

We also have interpretations of the classesQi[j]. In this context, Lemma 3.7
says

Qnl+1−i+1[i− 1] = cTi (ker(A
∗
l+1 → A

∗
l )),

for nl+1 − nl < i ≤ nl+1 − nl−1, so in particular,

(19) Qnl−1+1[nl+1 − nl−1 − 1] = cTnl+1−nl−1
(ker(A ∗

l+1 → A
∗
l )).

In the case of the complete flag variety, Ql[1] is the equivariant class of the
locus where A ∗

l+1 → A ∗
l fails to be surjective.

Intersection theory on hyperquot schemes was used to obtain a quantum
Schubert calculus on Grassmannians and flag varieties [Be, CF1, CF2, Ch].
These articles rely on the fact that Gromov-Witten invariants can be com-
puted as intersection numbers on quot schemes. The fundamental fact we
use in the proof of Theorem 1.1 is an equivariant version of that statement:

Proposition 4.2. The equivariant quantum product can be computed on
(hyper)quot schemes. That is, given permutations v1, . . . , vr in Sn, the

EQLR coefficient cw,dv1,...,vr(t) is equal to

π̃T∗ (µv1 · · ·µvr · µ̃w∨),

where π̃T∗ : H∗
T (Qd) → H∗

T (pt) is the equivariant pushforward to a point.

To prove this, we will check equality of the coefficient of each monomial
(−α1)

j1 · · · (−αn−1)
jn−1 · (−tn)

jn , using Lemma 2.3. In fact, we will see that
these coefficients count points in certain intersections taking place inside the
mixing space M(d), so they are nonnegative integers; see Corollary 6.3.

We also write

(µv1 · · ·µvr · µ̃w∨)Td = π̃T∗ (µv1 · · ·µvr · µ̃w∨)
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for the EQLR coefficient cw,dv1,...,vr(t). With this notation, we have

σv1 ◦ σv2 ◦ · · · ◦ σvr =
∑

w,d

qd (µv1 · · ·µvr · µ̃w∨)Td σw.

By linearity of equivariant quantum cohomology of flag varieties and of
equivariant cohomology of quot schemes, for any polynomial F in variables
indexed by Sn, we obtain

Corollary 4.3.

F (σ, t) =
∑

w,d

qd (F (µ, t) · µ̃w∨)Td σw in QH∗
T (Fl(n)).

Unlike the Kontsevich compactification, there is no globally defined eval-
uation map from Qd to Fl(n). However, the boundary Qd rM(d) can be
broken into pieces which do map to (different) partial flag varieties. This
is described in detail in [Be], [CF1], and [CF2]; we summarize the relevant
facts here.

Fix n. Given d, let e = (e1, . . . , em) be such that

(20)
ei ≤ min(ni, di) for 1 ≤ i ≤ m, and

ei − ei−1 ≤ ni − ni−1 for 2 ≤ i ≤ m.

In addition to Qd and Fl(n), we will also consider quot schemes Qd−e

(parametrizing quotients whose ranks are still n, but whose degrees are
d − e) and partial flag varieties Fl(n′) (where n′ = {n1 − e1 ≤ n2 − e2 ≤
· · · ≤ nm − em}).

Theorem 4.4 ([CF1, CF2]). Assume some ei > 0. There are smooth irre-
ducible varieties Ue with the following properties.

(1) There is a morphism he : Ue → Qd, which is birational onto its
image. Every point of Qd rM(d) lies in the image of he, for some
e.

(2) There is a smooth morphism ρ : Ue → P1 × Qd−e, whose image
contains P

1 ×M(d− e).

(3) Fix a point z ∈ P1, and write Ue(z) = ρ−1({z} ×Qd−e). There is a
natural morphism

ψe(z) : Ue(z) → Fl(n′),

and for each w ∈ Sn, there is a w′ ∈ Sn′

such that

h−1
e (Dw(z)) = ρ−1(P1 ×De

w(z)) ∪ ψe(z)
−1(Ωw′),

where the superscript in De
w indicates the degeneracy locus inside

Qd−e. The same holds with Dw(z) and Ωw′ replaced by D̃w(z) and

Ω̃w′, respectively.

Moreover, the morphisms he, ρ, and ψe(z) are equivariant for natural ac-
tions of GLn = GL(V ).
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5. The mixing group

Recall that the T -equivariant cohomology of Fl(n) is computed as the
ordinary cohomology of a flag bundle Fl = Fl(n;E) → B, where E =
L1⊕· · ·⊕Ln. There is a large group acting on Fl, using the transitive auto-
morphism group of B together with a “fiberwise” action of lower-triangular
matrices. This group was introduced in [An] and dubbed the “mixing group”
in [AGM]; in this section, we describe its construction concretely for the
present context.

We identify T with (C∗)n using the basis α1, . . . , αn−1, tn for M , where
αi = ti − ti+1. Using the approximation space B = (PN−1)n (for N ≫ 0,
as in §2.4), set Mi = pr∗iO(−1), so c1(Mi) = αi for 1 ≤ i ≤ n − 1, and
c1(Mn) = tn. With this setup, we have Li = Mi ⊗ Mi+1 ⊗ · · · ⊗ Mn, so
c1(Li) = ti.

Observe that for i ≥ j, the line bundle

Li ⊗ L−1
j =M−1

j ⊗ · · · ⊗M−1
i−1

is generated by global sections. It follows that the bundle

End(E) =
⊕

i,j

Li ⊗ L−1
j

has global sections in lower-triangular matrices.
Let Aut(E) ⊂ End(E) be the automorphism bundle of E; this is a

group scheme over B, whose fiber at x is GL(E(x)). The group Γ0 =
HomB(B, Aut(E)) of global sections is a connected algebraic group over C.
This group acts on the total space of the bundle E, and hence also on the
flag bundle Fl, preserving the fibers of the projection to B. The group acts
similarly on Qd, the mixing space for the quot scheme Qd.

The group (PGLN )
n acts naturally on Γ0 via its transitive action on B.

Let Γ = Γ0⋊ (PGLN )
n be the semidirect product; this is a connected linear

algebraic group acting on Fl and Qd, which we call the mixing group.

Let Ẽ• be the flag of bundles on B with Ẽi = Ln ⊕ · · · ⊕ Ln+1−i, and let

Ω̃w ⊆ Fl be the corresponding Schubert loci. Then Ω̃w
∼= E×T Ω̃w.

Lemma 5.1 ([An], [AGM, §6]). Let X be a scheme with an action of B̃,

and let Xi be the B̃-orbits. Let X = E×TX and Xi = E×TXi be the mixing
spaces. Then the orbits of Γ on X are Xi.

In particular, the orbits of Γ on Fl are the cells Ω̃◦
w
∼= E×T Ω̃◦

w (so Γ acts
with finitely many orbits).

6. Equivariant moving lemmas

In this section we use the action of the mixing group to put certain subva-
rieties of the space of maps into (generically) transverse position. Our goal
is to prove Proposition 4.2, establishing that the EQLR coefficients can be
computed on quot schemes. Along the way, we will obtain an “enumerative”
interpretation of these coefficients.
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We will need a generalization of Kleiman’s transversality theorem [Kl,
Theorem 8]. As a matter of notation, for an algebraic group G acting on
a scheme X, a map ψ : Z → X, and an element g ∈ G, we write g · Z to

denote Z equipped with the composite map Z
ψ
−→ X

g·
−→ X. (When ψ is an

embedding, this is simply the translation of Z by g.)
A map ψ : Z → X is dimensionally transverse to a (locally closed)

subvariety V ⊆ X if codimZ(ψ
−1V ) = codimX(V ).

Proposition 6.1. Let X be a smooth variety with an action of an algebraic
group G, and let Y and Z be Cohen-Macaulay varieties with maps ϕ : Y → X
and ψ : Z → X. Assume that ψ is dimensionally transverse to the orbits of
G on X, that is,

codimZ(ψ
−1O) = codimX(O)

for all orbits O. Then for general g in G, the scheme Wg = Y ×X (g · Z) is
pure-dimensional, of dimension

dimWg = dimY + dimZ − dimX.

(When ψ is an embedding of Z in X, this says codimY (ϕ
−1(g · Z)) =

codimX(Z).) If the ground field has characteristic zero, and Y and Z are
reduced, then for general g, Wg is also reduced.

The proof is the same as those appearing in [Kl] and [Sp]: the essential
point is that the action map G× Z → X is flat.

We will apply Proposition 6.1 repeatedly in the situation where X = Fl

is the flag bundle (or approximation space), or a product of such spaces. In
what follows, we work with the setup:

• Ω1, . . . ,Ωr ⊆ Fl are Schubert varieties of codimensions ℓ1, . . . , ℓr,

and Ω̃ is an opposite Schubert variety, of codimension ℓ.
• p1, . . . , pr, p are fixed, distinct points of P1.
• J = (j1, . . . , jn) ∈ {0, . . . ,m− 1}n is an index.
• A = ℓ1 + · · ·+ ℓr + ℓ.

As usual, let Mr(d) denote the space of maps with r marked points, let
M r(d) be the Kontsevich space of stable maps, and let Mr(d) and Mr(d)
be the corresponding approximate mixing spaces.

Lemma 6.2 (Moving Lemma A). There are elements γ1, . . . , γr in the mix-
ing group Γ such that

W
′
= ev−1(γ1 ·Ω1 × · · · × γr ·Ωr × Ω̃) ∩ (Mr+1(d))J

is either empty, or reduced and pure dimensional of codimension A inside
(M0,r+1(d))J . Moreover,

W ′ = ev−1(γ1 ·Ω1 × · · · × γr ·Ωr × Ω̃) ∩ (Mr+1(d))J

is Zariski-dense inside W
′
.

In fact, γ1, . . . , γr can be chosen so that the same results hold for

W = ev−1(γ1 ·Ω1 × · · · × γr ·Ωr × Ω̃) ∩ (Mr+1(d))J ∩ f̃−1(x)
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and

W = ev−1(γ1 ·Ω1 × · · · × γr ·Ωr × Ω̃) ∩ (Mr+1(d))J ∩ f̃−1(x),

where x ∈ M0,r+1 is the point corresponding to (p1, . . . , pr, p), and f̃ is the

composition Mr+1(d) → M0,r+1 = B×M0,r+1 →M0,r+1.

Proof. Apply Proposition 6.1, using the group G = Γ(r+1) = (Γ0)
r+1

⋊

(PGLN )
n, with

X = Fl×B · · · ×B Fl (r + 1 factors),

Z = Ω1 ×B · · · ×B Ωr ×B Fl →֒ X,

and

Y = ev−1(Fl×B · · · ×B Fl×B Ω̃) ∩ (Mr+1(d))J
ev|Y
−−−→ X.

Observe that Y has codimension ℓ in (Mr+1(d))J , and is therefore Cohen-
Macaulay, since Mr+1(d) is.

The statement about W ′ follows by showing that

W
′
rW ′ = ∂W

′
= ev−1(γ1 ·Ω1 × · · · × γr ·Ωr × Ω̃) ∩ (∂Mr+1(d))J

has strictly smaller dimension than W
′
, where ∂Mr+1(d) = Mr+1(d) r

Mr+1(d) is the boundary divisor. For this, apply the proposition with Y re-
placed by ∂Y , defined similarly. (This divisor in Y is again Cohen-Macaulay,
for the same reasons.) �

In Moving Lemma A, W can be identified with γ1 · Ω1(p1) ∩ · · · ∩ γr ·

Ωr(pr)∩Ω̃(p)∩(M(d))J , whereM(d) is the space of degree dmaps P1 → Fl,
and Ωi(pi) is the locus sending pi into Ωi. This gives us our enumerative
interpretation of the EQLR coefficients.

Corollary 6.3. Write the polynomial cw,dv1,...,vr(t) as
∑

J c
w,d,J
v1,...,vr (−α)

J . Then
for general γ1, . . . , γk chosen as in Lemma 6.2, we have

cw,d,Jv1,...,vr
=

{
#W if dimW = 0;

0 otherwise.

Consequently, the EQLR coefficient cw,dv1,...,vr(t) is Graham-positive; that is,
when written as a polynomial in the variables −αi, it has nonnegative coef-
ficients.

Proof. Use the description of cw,dv1,...,vr(t) given in (10), together with the last
part of Moving Lemma A. Recalling that f : M r+1(d) → M0,r+1 denotes

the forgetful map, note that [f̃−1(x)] = f∗[pt] as classes in H∗Mr+1(d) =
H∗
TM r+1(d). �

Next we must prove an analogue of Moving Lemma A for quot schemes.
Continuing the notation, we write Di ⊆ P

1 × Qd for the degeneracy locus
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of (17) corresponding to the Schubert variety Ωi, and we write Qd and Di

for the mixing spaces.

Lemma 6.4 (Moving Lemma B). There are elements γ1, . . . , γr in the mix-
ing group Γ such that

W = γ1 ·D1(p1) ∩ · · · ∩ γr ·Dr(pr) ∩ D̃(p) ∩ (Qd)J

is either empty, or reduced and pure dimensional of codimension A inside
(Qd)J . Moreover,

W = γ1 ·Ω1(p1) ∩ · · · ∩ γr ·Ωr(pr) ∩ Ω̃(p) ∩ (M(d))J

is Zariski-dense inside W .

The proof is essentially the same as that of [CF2, Theorem 4.3(ii)], using
the mixing group action and Proposition 6.1 in place of the transitive group
action on Fl(n).

Proof. In Moving Lemma A, we have already seen that W is reduced and
pure-dimensional of codimension A (when nonempty). To prove this lemma,
it will suffice to show that W ∩ (∂Qd)J has codimension greater than A in
(Qd)J , where ∂Qd = Qd rM(d) is the boundary.

Consider e as in (20), with some ei > 0. By induction on d, we may
assume the statement holds for Qd−e. (The base case is Q0 = Fl, where
Proposition 6.1 applies directly.) Let Ue be the mixing space for the variety
Ue of Theorem 4.4. Since the map he : Ue → Qd is birational onto its image,
and ∂Qd is covered by such images, it will suffice to show

(21) codimUe

(
r⋂

i=1

h−1
e (γi ·Di(pi)) ∩ h

−1
e (D̃(p))

)
> A− codimQd

(he(Ue))

for general γ1, . . . , γr in Γ. Using Theorem 4.4(3), the intersection on the
LHS can be written as

(22)

r⋂

i=1

(
ρ−1(P1 × γi ·D

e

i (pi)) ∪ ψe(pi)
−1(γi ·Ωw′

i
)
)

∩
(
ρ−1(P1 × D̃e(p)) ∪ ψe(p)

−1(Ω̃w′)
)
.

(Here Ωw′

i
⊆ Fl(n′) is the Schubert variety whose existence is claimed in

Theorem 4.4, where Ωi = Ωwi
.) Since the points p1, . . . , pr, p are distinct,

any nonempty component of the expansion of this intersection contains at

most one factor of ψe(pi)
−1(Ωw′

i
) or ψe(p)

−1(Ω̃w′).

If there are no factors of ψe(pi)
−1(Ωw′

i
) or ψe(p)

−1(Ω̃w′), the intersection
is the inverse image of a similar intersection on Qd−e. By induction and the
fact that ρ is smooth, the inequality (21) holds for these components.

For the case where ψe(p)
−1(Ωw′

r
) occurs, let

X = Fl(n′),

Z = Ωw′
r
→֒ X,
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and

Y =

r−1⋂

i=1

ρ−1({pr} × γi ·Di(pi)) ∩ ρ
−1({pr} × D̃(p))

ψe(pr)
−−−−→ X.

By the previous case, Y has codimension ℓ1 + · · · + ℓr−1 + ℓ in Ue(pr) =
ρ−1({pr} × Qd−e). By Proposition 6.1, we can choose γr ∈ Γ so that

Y ∩ ψe(pr)
−1(γr ·Ωw′

r
)

has codimension ℓ(w′
r) in Y . The inequality (21) follows from the estimates

on ℓ(w′
r) from [CF2, Lemma 5.5(ii), Lemma 5.8(i)], as in [CF2, §6.1].

Finally, for the case where ψe(p)
−1(Ω̃w′) occurs, first observe that each

De
i (pi) ⊆ Qd−e is a B-invariant subscheme (where B ⊆ GLn is upper-

triangular matrices), and it is dimensionally transverse to all B̃-orbits in
Qd−e. It follows that De

i (pi) is dimensionally transverse to Γ-orbits on
Qd−e. Now apply Proposition 6.1, with

X = Qd−e ×B · · · ×B Qd−e (r factors),

Z = De

1(p1)×B · · · ×B De

r(pr) →֒ X,

and

Y = ψe(p)
−1(Ω̃w′)

ρ×···×ρ
−−−−−→ X,

where ρ is the restriction of ρ : Ue → P
1×Qd−e to ψe(p)

−1(Ω̃w′) ⊆ Ue(p) =
ρ−1({p} × Qd−e). We find γ = (γ1, . . . , γr) in Γ(r) such that

(ρ× · · · × ρ)−1(γ · Z) =
r⋂

i=1

ρ−1(P1 × γi ·D
e

i (pi)) ∩ ψe(p)
−1(Ω̃w′)

has codimension ℓ1 + · · ·+ ℓr in Y . Since Y has codimension ℓ(w′) in Ue(p),
the same estimate as in the previous case proves the inequality (21). �

We can now complete the proof of Proposition 4.2.

Corollary 6.5. Writing cw,dv1,...,vr(t) =
∑

J c
w,d,J
v1,...,vr (−α)

J as above, we have

cw,d,Jv1,...,vr
= πQd

∗ ([D1(p1)] · · · [Dr(pr)] · [D̃(p)] · [(Qd)J ]),

where πQd is the map Qd → pt.

Proof. By Moving Lemma B, the right-hand side is equal to #W . However,
this W is the same as the one from Moving Lemma A, where x corresponds
to the point (p1, . . . , pr, p) ∈M0,r+1, so the claim follows from Corollary 6.3.

�



EQUIVARIANT QUANTUM SCHUBERT POLYNOMIALS 23

7. Proofs of the main results

For a partial flag variety Fl(n), recall that the equivariant quantum Schu-
bert polynomial S

q
w(x, t) is defined to be polynomial obtained from the

universal double Schubert polynomial Sw(g, h) (or Sw(g, y)) by the spe-
cialization (1), setting the variables gi[0] to xi, the variables hi[0] (or yi)
to the variables ti, the variables gni−1+1[ni+1 − ni−1 − 1] to (−1)ni−ni−1+1qi
for 1 ≤ i ≤ m, and setting all other gi[j] and hi[j] to zero. Letting σji be
the ith symmetric polynomial in xnj−1+1, . . . , xnj

, we write S
q
w(x, t) as a

polynomial in the σji and ti, and denote this by S
q
w(σ, t).

In (19), we observed that gni−1+1[ni+1 − ni−1 − 1] maps to the class

Qni−1+1[ni+1 − ni−1 − 1] = cTni+1−ni−1
(ker(A ∗

i+1 → A
∗
i ))

in H∗
TQd. Note that the same variable maps to (−1)ni−ni−1+1qi. In the

case of the complete flag variety, the class Qi[1] represents the locus on Qd

where A ∗
i+1 → A ∗

i is not surjective, and the corresponding variable gi[1]
specializes to qi.

More generally, for any polynomial P (g, y) in variables gi[j] and yi, de-
note by P q(x, t) the polynomial which results after performing the above
substitutions. Denote by eqk(l) the polynomial obtained by the above sub-

stitutions into Elk(g), for 0 ≤ k ≤ l (see (12)). Since eqk(n) is symmetric in
xnj−1+1, . . . , xnj

for every 1 ≤ j ≤ m+ 1, it can be written as a polynomial

in the σji , which we denote by ẽqk(m+ 1).
Our main goal is to prove the equivariant quantum Giambelli formula,

which we restate here for convenience:

Theorem 7.1. For w ∈ Sn, we have σw = S
q
w(σ, t) in QH∗

T (Fl(n)).

In the course of proving this, we will simultaneously prove an auxiliary
result, as in [Ch].

Proposition 7.2. Let P (Q, t) be a polynomial in the classes Qi[j] and t,
where i+ j ∈ n. Then

P q(x, t) =
∑

d,v

qd (P (Q, t) · µ̃v∨)
T
d σv in QH∗

T (Fl(n)).

Before proceeding to the proofs, we note that the presentations of the co-
homology ring of Fl(n) given in [Kim] can be deduced from Proposition 7.2.
Recall from §2.4 that ΛT = H∗

T (pt)
∼= Z[t1, . . . , tn], and let q and x stand

for the variable sets (q1, . . . , qm) and (x1, . . . , xn), respectively.

Corollary 7.3. We have

QH∗
T (Fl(n))

∼= ΛT [q][σ
1
1 , . . . , σ

1
n1
, . . . , σm+1

1 , . . . , σm+1
n−nm

]/IqT

where IqT is the ideal (ẽq1(m+1)−e1(t), . . . , ẽ
q
n(m+1)−en(t)). In the special

case of the complete flag variety Fl(Cn), this gives

QH∗
T (Fl(C

n)) ∼= ΛT [q][x]/(e
q
1(n)− e1(t), . . . , e

q
n(n)− en(t)).
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Proof. The argument is the same as in [Ch, Theorem 7.1]; we sketch it here.
We have Enk (Q) = cTk (A

∗
n) = cTk (V

∗) = ek(t1, . . . , tn), since V
∗ is a trivial

(but not equivariantly trivial) vector bundle. Now apply Proposition 7.2 to
the polynomials P (Q, t) = Enk (Q) − ek(t) = 0, for k = 1, . . . , n, obtaining n
relations which specialize to the known relations defining H∗

T (Fl(n)). The
claim follows. �

In the proof of Theorem 7.1 and Proposition 7.2, we will use three lemmas.

Lemma 7.4. For w ∈ Sn, σw =
∑

d,v q
d (µw · µ̃v∨)

T
d
σv in QH∗

T (Fl(n)).

Proof. When d = 0, the quot scheme Qd is the flag variety Fl(n), and in

this case duality (see (7)) gives (µw · µ̃v∨)
T
0
= [Ωw]

T · [Ω̃v∨ ]
T = δwv.

More generally, we have

(µw · µ̃v∨)
T
d = π̃T∗ (µw · µ̃v∨) = π̃T∗ ([Dw(0)] · [D̃v∨(∞)]).

For degree reasons, (µw · µ̃v∨)
T
d

can be nonzero only when ℓ(w) + ℓ(v∨) ≥
dimQd. Using Lemma 6.4, in the case r = 1, one sees that Dw(0) and

D̃v∨(∞) are dimensionally transverse. It follows that

[Dw(0)] · [D̃v∨(∞)] = [Dw(0) ∩ D̃v∨(∞)],

and that Dw(0)∩ D̃v∨(∞) is empty when ℓ(w)+ ℓ(v∨) > dimQd. Therefore
(µw · µ̃v∨)

T
d
can be nonzero only when ℓ(w)+ ℓ(v∨) = dimQd; that is, when

Dw(0)∩D̃v∨(∞) consists of finitely many points. Moreover, Lemma 6.4 also

implies Dw(0)∩D̃v∨(∞)∩M(d) is dense in Dw(0)∩D̃v∨(∞), so these points
must lie in M(d).

Finally, recall there is an action of C∗ on Qd, coming from the standard

action on P1, and Dw(0) ∩ D̃v∨(∞) is stable under this C∗ action. When
d 6= 0, this action has no fixed points inside M(d), since a non-constant

map is changed by reparametrization. Therefore Dw(0) ∩ D̃v∨(∞) is empty
whenever ℓ(w) + ℓ(v∨) = dimQd, and it follows that (µw · µ̃v∨)

T
d
= 0 in this

case. �

The following lemma shows that a similar sum which involves a single
Qi[j] only has one non-zero term. Let el = (0, . . . , 1, . . . , 0) be the m-tuple
whose only nonzero entry is in the lth position.

Lemma 7.5. For 1 ≤ l ≤ m and 1 ≤ i ≤ nl,
∑

d,v

qd (Qi[nl+1 − i] · µ̃v∨)
T
d σv = (Qnl−1+1[nl+1 − nl−1 − 1] · µ̃w◦)Tel

if i = nl−1 + 1, and is equal to zero otherwise.

Proof. Note that when da = 0, Aa → Ab is an inclusion of vector bundles
on Qd for all b > a, or equivalently A∗

b → A∗
a is a surjection of bundles on

Qd.
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Let l′ < l be such that nl′ +1 ≤ i ≤ nl′+1. If da = 0 for any l′+1 ≤ a < l,
then by Lemma 3.8 applied to b = l+1, we obtain Qi[nl+1 − i] = 0, so that
Qi[nl+1 − i] 6= 0 only if dl′+1, . . . , dl−1 > 0.

By this and degree considerations, we conclude that (Qi[nl+1 − i] · µ̃v∨)
T
d

is zero unless

nl+1 − i+ 1 + ℓ(v∨) ≥ dimQd = dimF +
m∑

k=1

dk(nk+1 − nk−1)

≥ dimF + nl+1 + nl − nl′ − nl′+1.

Since nl+1 − nl′ + dimF ≥ nl+1 − i+ 1 + ℓ(v∨), these inequalities can only
hold when l′ = l − 1 and every inequality is an equality. Therefore d = el,
i = nl−1 + 1, and v∨ = w◦, the permutation of longest length. �

Lemma 7.6. Assume that Proposition 7.2 holds for polynomials P (Q, t) of
Q-degree up to nl+1 − nl−1 − 1. Then

(Qnl−1+1[nl+1 − nl−1 − 1] · µ̃w◦)Tel = (−1)nl+1−nl+1.

Proof. Recall that (Qnl−1+1[nl+1 − nl−1 − 1] · µ̃w◦)Tel is defined as the equi-

variant pushforward π̃T∗ (Qnl−1+1[nl+1 − nl−1 − 1] · µ̃w◦), for π̃T∗ : H∗
TQel

→
H∗
T (pt). Moreover, since the degree of Qnl−1+1[nl+1−nl−1−1] · µ̃w◦ is equal

to nl+1 − nl−1 + ℓ(w◦) = dimQel
, the equivariant pushforward is equal to

the non-equivariant one:

π̃T∗ (Qnl−1+1[nl+1 − nl−1 − 1] · µ̃w◦) = π̃∗(Qnl−1+1[nl+1 − nl−1 − 1] · µ̃w◦)

in H0
T (pt) = H0(pt) = Z, where for a class γ in H∗

TQel
, we write γ for

its image in H∗Qel
. By [Ch, Proposition 11.1], the right-hand side is

(−1)nl+1−nl+1, as desired. (To apply this result of [Ch], note that our Propo-
sition 7.2 for polynomials P (Q, t) of Q-degree up to nl+1 − nl−1 − 1 implies
the corresponding non-equivariant statement in [Ch, Proposition 8.1].) �

We are now ready to prove the main results of this section.

Proof of Proposition 7.2 and Theorem 7.1. We will use induction on the length
of w, and on the degree of P (Q, t), viewed as a polynomial in Qi[j] with co-
efficients in Z[t].

We proceed by showing that Theorem 7.1 for ℓ(w) ≤ s implies Proposi-
tion 7.2 for polynomials P (Q, t) of Q-degree at most s, and then showing
that Proposition 7.2 for polynomials P (Q, t) of Q-degree at most s, together
with Lemma 7.5, imply Theorem 7.1 for permutations w of length at most
s+1. The base case s = 0 for Theorem 7.1 holds because σid = 1 as needed.

First suppose that Theorem 7.1 holds when ℓ(w) ≤ s. Let P (Q, t) be a
polynomial of Q-degree at most s. Then its terms involve only ti and Qi[j]
with j ≤ s − 1 and i + j ∈ n. By Lemma 3.4, each Qi[j] that could occur
can be written as a polynomial in t and S

n
w(Q, t) with ℓ(w) ≤ s. Therefore

a polynomial P (Q, t) in t and Qi[j] with j ≤ s− 1 can be rewritten as

P (Q, t) = F (Sn

w(Q, t), t) = F (µw, t),
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where the second equality holds by Proposition 4.1. Note that F is a poly-
nomial in µw and t with w ∈ Sn and ℓ(w) ≤ s.

By Corollary 4.3, we obtain the equalities
∑

d,v

qd (P (Q, t)) · µ̃v∨)
T
d σv =

∑

d,v

qd (F (µ, t) · µ̃v∨)
T
d σv = F (σ, t)

in QH∗
T (Fl(n)). Since F (σ, t) is a polynomial in σw with ℓ(w) ≤ s, we can

apply our hypothesis to obtain F (σ, t) = F (σqw(x, t), t) = P q(x, t) so that
Proposition 7.2 holds for polynomials P (Q, t) with Q-degree at most s.

Now suppose that Proposition 7.2 holds for polynomials of Q-degree at
most s. Let w ∈ Sn with ℓ(w) = s + 1. Consider the polynomial Sw(Q, t).
By degree considerations, since the degree of Qi[j] is j + 1, each Qi[s] can
only appear linearly, and we can writeSw(Q, t) = P (Q, t)+

∑
aiQi[s], where

P (Q, t) is a polynomial of Q-degree at most s, and ai ∈ Z. Therefore

σw =
∑

d,v

qd (Sw(Q, t) · µ̃v∨)d σv

=
∑

d,v

qd (P (Q, t)) · µ̃v∨)d σv +
∑

i

ai
∑

d,v

qd (Qi[s] · µ̃v∨)d σv

= P q(x, t) +
∑

ai(−1)nl+1−nl+1ql

= S
q
w(x, t),

where the final sum is over (i, s) = (nl−1 + 1, nl+1 − nl−1 − 1). The last
line follows from Proposition 7.2 for polynomials of Q-degree at most s,
Lemma 7.5, and Lemma 7.6, which holds since s = nl+1−nl−1−1. We have
shown that Theorem 7.1 holds for permutations w ∈ Sn of length at most
s+ 1.

This concludes the proof of Theorem 7.1 and Proposition 7.2, and there-
fore the proofs of the equivariant quantum Giambelli formula and presen-
tation of the equivariant quantum cohomology ring for partial flag vari-
eties. �

8. Further properties

We conclude with some brief remarks about the stability properties of the
equivariant quantum Schubert polynomials. First, the universal Schubert
polynomials are independent of n, from the definition (see §3 and [Fu, §2]):

Lemma 8.1. Consider w ∈ Sn. The polynomial Sw(c, d) is the same when
w is considered as a permutation in Sn′, for n′ > n, using the standard
embedding of symmetric groups.

As an immediate consequence, we have a weak stability property of equi-
variant quantum Schubert polynomials for partial flags. Let n = (n1 < · · · <
nm < nm+1 = n), and for any n′ > n, let n′ = (n1 < · · · < nm < nm+1 <
nm+2 = n′). The standard embedding Sn ⊂ Sn′ leads to a canonical inclu-

sion Sn ⊂ Sn
′

. (Concretely, given w ∈ Sn, the corresponding minimal length
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representative in Sn′

is given by appending nm+1+1, nm+1+2, . . . , nm+2 = n′

to w.) Then S
q
w(σ, t) is the same whether w is considered in Sn or Sn′

.
For the remainder of this section, we will focus on the complete flag case.

Consider the standard embeddings of symmetric groups Sn ⊂ Sn+1 ⊂ · · · ⊂
S∞, and for each n, let IqT (n) be the ideal (eq1(n)− e1(t), . . . , e

q
n(n)− en(t))

from Corollary 7.3. In analogy with [FGP, Theorem 10.1], the polynomials
for complete flags may be characterized as follows:

Proposition 8.2. For w ∈ Sn, the equivariant quantum Schubert polyno-
mial Sq

w(x, t) is the unique polynomial in Z[t1, . . . , tn; q1, . . . , qn−1;x1, . . . , xn]
with the property that, for all N ≥ n, Sq

w(x, t) represents the Schubert class
σw in the ring

QH∗
T (Fl(n)) = Z[t1, . . . , tN ; q1, . . . , qN−1;x1, . . . , xN ]/I

q
T (N).

Proof. As remarked above, in Lemma 8.1, the polynomial Sq
w(x, t) is in-

dependent of n, so long as w ∈ Sn. That S
q
w(x, t) represents σw is the

content of Theorem 1.1, so the only question is uniqueness. This follows
from Lemma 8.4 below. �

As polynomials in x and q, our eqk(l) are the same as the quantum elemen-

tary symmetric polynomials considered in [FGP] (and denoted Elk there); the
following “quantum straightening lemma” therefore applies without change.

Lemma 8.3 ([FGP, Lemma 3.5]). For 0 ≤ j, k ≤ l, we have

eqj(l) e
q
k+1(l + 1) + eqj+1(l) e

q
k(l) + ql e

q
j−1(l − 1) eqk(l)

= eqk(l) e
q
j+1(l+1)+eqk+1(l) e

q
j(l)+ql e

q
k−1(l−1) eqj (l). �

As in [FGP], this straightening relation means that any monomial in
the quantum elementary symmetric polynomials can be written as a Z[q]-
linear combination of “standard” monomials eqi1(1) · e

q
i2
(2) · · · eqin(n), with

0 ≤ il ≤ l.

Lemma 8.4. For each n, the following Z[t, q]-submodules of Z[t, q, x] are
the same:

• the submodule spanned by equivariant quantum Schubert polynomials
S
q
w(x, t), for w ∈ Sn;

• the submodule spanned by ordinary (single) quantum Schubert poly-
nomials S

q
w(x), for w ∈ Sn;

• the submodule spanned by the monomials xa11 · · · xann with ai ≤ n− i.

Moreover, in each case the submodule is free and the indicated spanning set
is a basis.

Proof. The argument is the same as in [FGP, §3]. From the definition of
double universal Schubert polynomials (13), we have

S
q
w(x, t) = S

q
w(x) +R,
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where R lies in the Z[t, q]-submodule spanned by Schubert polynomials
S
q
u(x) with u < w. It follows that the equivariant quantum Schubert poly-

nomials lie in the span of the ordinary quantum Schubert polynomials, and
since the transition matrix between these two bases is uni-triangular, the
submodules are the same. The equality of the last two spans follows di-
rectly from [FGP, Proposition 3.6]. �

Taking n to infinity, it follows from Lemma 8.4 that the equivariant quan-
tum Schubert polynomials S

q
w(x, t) form a Z[t, q]-basis for Z[t, q, x], as w

runs over S∞, and all three sets of variables are infinite. This means that
any product Sq

u ·S
q
v can be expanded as a Z[t, q]-linear combination of equi-

variant quantum Schubert polynomials. We conclude with an observation
about these products.

It will be convenient to have notation for the polynomial ring: let

RN = Z[t1, . . . , tN ; q1, . . . , qN−1;x1, . . . , xN ].

Lemma 8.5. For n < N , consider the standard embedding Sn ⊂ SN . Let
w ∈ SN , so S

q
w = S

q
w(x, t) is a polynomial in RN . Let J be the ideal

J = IqT (n)·RN+(tn+1, . . . , tN )·RN+(qn, . . . , qN−1)·RN+(xn+1, . . . , xN )·RN .

If w 6∈ Sn, the polynomial Sq
w lies in J . Equivalently, Sq

w maps to zero in
QH∗

T (Fl(n))
∼= RN/J .

Proof. Consider a quot scheme Qd compactifying maps to Fl(n). For any
u ∈ SN and v ∈ Sn, the proof of Lemma 7.4 shows that (µu · µ̃v∨)

T
d

= 0
unless d = 0 and u = v. Since w 6∈ Sn, we have

(Sw(Q, t) · µ̃v∨)
T
d = (µw · µ̃v∨)

T
d = 0

for all d, where for i, j > n and k > n − 1, we set the extra variables ti =
Qj[0] = Qk[1] = 0 inSw(Q, t). The lemma now follows from Proposition 7.2.

�

An immediate consequence is that the equivariant quantum Schubert
polynomials multiply like Schubert classes in QH∗

T (Fl(n)).

Corollary 8.6. Given permutations u, v ∈ Sn, expand the product of equi-
variant quantum Schubert polynomials as

S
q
u(x, t) ·S

q
v(x, t) =

∑

w

awS
q
w(x, t),

with w ∈ S∞ and aw ∈ Z[t, q]. Then the coefficient of qd in aw is equal to

cw,du,v when w ∈ Sn.
In other words, the equivariant quantum product σu ◦σv (in QH∗

T (Fl(n)))
is equal to the product of the polynomials S

q
u and S

q
v, after discarding the

terms awS
q
w for w 6∈ Sn. �
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For example, as polynomials in Z[t, q, x], we have

S
q
231 ·S

q
231 = q1(t2 − t1)S

q
21 + (t2 − t1)(t3 − t1)S

q
231 + q2S

q
312

+ (t2 − t1)S
q
2413 +S

q
3412,

where S
q
w = S

q
w(x, t). To get the corresponding product σ231 ◦ σ231 in

QH∗
T (Fl(3)), simply discard the last two terms.

This provides an easy way to compute equivariant quantum products.
Using Maple1, we computed the full multiplication tables for QH∗

T (Fl(n))
for n ≤ 5; individual products are also quickly computable for higher n. We
include the n = 3 case in Table 2.

u v σu ◦ σv

213 213 σ312 + (t2 − t1)σ213 + q1 σ123
213 132 σ231 + σ312
213 231 σ321 + (t2 − t1)σ231
213 312 (t3 − t1)σ312 + q1 σ132
213 321 (t3 − t1)σ321 + q1 σ231 + q1q2 σ123
132 132 σ231 + (t3 − t2)σ132 + q2 σ123
132 231 (t3 − t1)σ231 + q2 σ213
132 312 σ321 + (t3 − t2)σ312
132 321 (t3 − t1)σ321 + q2 σ312 + q1q2 σ123
231 231 (t2 − t1)(t3 − t1)σ231 + q2 σ312 + q2(t2 − t1)σ213
231 312 (t3 − t1)σ321 + q1q2 σ123
231 321 (t2 − t1)(t3 − t1)σ321 + q2(t3 − t1)σ312

+q1q2 σ132 + q1q2(t2 − t1)σ123
312 312 (t2 − t1)(t3 − t1)σ312 + q1 σ231 + q1(t3 − t2)σ132
312 321 (t2 − t1)(t3 − t1)σ321 + q1(t3 − t1)σ231 + q1q2 σ213

+q1q2(t3 − t2)σ123
321 321 (t2 − t1)(t3 − t1)(t3 − t2)σ321 + [q2(t3 − t1)(t3 − t2) + q1q2]σ312

+[q1(t2 − t1)(t3 − t1) + q1q2]σ231 + q1q2(t3 − t2)σ132
+q1q2(t2 − t1)σ213 + q1q2(t2 − t1)(t3 − t2)σ123

Table 2. Equivariant quantum products in QH∗
TFl(3).
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[D] Michel Demazure, “Désingularization des variétés de Schubert généralisée,” Ann.
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