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 Cutting a Pie Is Not a Piece of Cake

 Julius B. Barbanel, Steven J. Brams, and Walter Stromquist

 We dedicate this paper to the memory of David Gale.

 1. INTRODUCTION. The general problem of fair division and the specific problem
 of cutting a cake fairly have received much attention in recent years (for overviews,
 see [1], [2], [3], [5], [6], [10]). Cutting a pie into wedge-shaped sectors has received
 far less attention, though it would seem that the connection between cake-cutting and
 pie-cutting is close ([4], [14]). Roughly speaking, if a cake is represented by a line
 segment, then it becomes a pie when its endpoints are connected to form a circle. Pie-
 cutting might be applied to the division of an island's shoreline into connected lots, to
 the allocation of land around an oil strike, or to the assignment of "on call" periods in
 a daily cycle.

 Suppose each of n players attributes values to pieces of cake or to sectors of pie.
 We ask whether it is always possible to divide a cake into n connected pieces with
 parallel, vertical cuts, or a pie into n sectors with radial cuts from the center, and
 assign one piece or one sector to each player in a way that is "envy-free," whereby
 each player thinks he or she receives at least a tied-for-largest portion and so does not
 envy any other player. If so, can we arrange that the resulting envy-free allocation is
 "undominated," meaning that there is no other allocation that is better for at least one
 player and not worse for the other players? These questions were posed by David Gale
 ([8]) about fifteen years ago. While he gave an affirmative answer for cakes (assuming
 a strong kind of continuity), he asked whether envy-free, undominated allocations are
 also possible for pies.

 We begin by discussing cake-cutting in Section 2, where we present Gale's result
 and then show that when there are three or more players, an envy-free allocation of a
 cake may fail to be undominated unless this strong version of continuity is assumed.
 (This assumption is implicit, but not explicit, in Gale's result.) Even with this assump-
 tion, however, we show in Section 3 (again for three or more players) that there may be
 no envy-free, undominated allocation for a pie, which makes pie-cutting harder - not a
 piece of cake. We extend our results for pie-cutting in Sections 4 and 5 and draw some
 conclusions in Section 6, ending with two open questions.

 To make the questions we pose precise, we introduce some mathematical formal-
 ism. We represent a cake by the half-open interval [0, 1), and we represent pieces
 of the cake by subintervals [a, ß) with 0 < a < ß < 1. Let's deem a pie mathe-
 matically equivalent to the circle S1 = R/Z or, equivalently, to the interval [0, 1]
 with its endpoints identified. (It will sometimes be more convenient for us to con-
 sider the pie to be some other interval.) We wish to introduce notation for sectors
 of the pie. For any a and ß with 0 < a < 1 and a < ß < a + 1, we let [a, ß) de-
 note the sector from a to ß, with the value of ß being interpreted mod 1. Thus, for
 example, [1/3, 2/3) = {x e S{ : 1/3 < x < 2/3} and [2/3, 4/3) = {x e Sl : 2/3 <
 x < 4/3} = {x e S1 : 2/3 < x < 1} U {je e S1 : 0 < x < 1/3}. We note that for any
 a, [a, a) denotes the empty sector and [a, a + 1) denotes the entire pie, and the com-
 plement of the sector [a, ß) is the sector [ß, a + 1) if ß < 1, and [ß - 1, a) if ß > 1.
 For ease of notation, we will always use [ß, a + 1) to denote the complement of [a, ß),
 even if ß > 1.
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 In order to assess the values of pieces of cake or sectors of pie, let's assume that
 player i uses a finitely additive measure vt, so that v¿(S) is the value of piece S to
 player /. If S = [a, jß), then we write v,-(S) = v,-(a, ß). We always assume that every
 measure v¡ is continuous as a function of a and ß. This corresponds to the intuitive
 notion that, as one endpoint of some sector moves continuously through the interval
 [0, 1), each player views the value of that sector as changing continuously. We also
 assume that every measure assigns value 1 to the whole cake or to the whole pie. It is
 understood that different players may operate with different measures.

 We say that players' measures are absolutely continuous with respect to one another
 if, whenever one player assigns value 0 to a particular piece of a cake or to a sector of
 a pie, all players do so. We do not always make this assumption, but when we do, we
 might as well contract to a point each piece or sector to which all the players assign
 value 0, so there is no piece or sector of positive length to which any player assigns
 value 0.

 To state Gale's question, let's call an allocation of pieces of a cake or sectors of a
 pie among players

 • envy-free if no player prefers another piece or sector to his or her own;

 • undominated if no other allocation gives each player at least as much value according
 to his or her measure as he or she had in the original allocation, and gives one player
 strictly more value.

 If the players' measures are absolutely continuous with respect to one another, then
 we can give a stronger definition of "undominated." An allocation is undominated if
 and only if no other allocation gives every player strictly more value according to
 his or her measure than he or she had in the original allocation. (If one player receives
 strictly more value, the absolute continuity of the measures with respect to one another
 allows that player to "spread" some of its value to all the other players to make a new
 allocation that gives each player a slightly larger piece.) Without assuming that the
 measures are absolutely continuous with respect to one another, this strengthening
 does not work.

 We emphasize that "undominated" here means "undominated with respect to other
 allocations into connected pieces (for cakes) or sectors (for pies), one per player,"
 which are the only types of allocations we consider in this paper. It is certainly possible
 that an allocation can be dominated by an allocation that assigns to some player disjoint
 pieces or sectors.

 Gale's query ([8]) is simple: Does there always exist an envy-free and undominated
 allocation of a cake or pie? We answer this question for cakes in Section 2 and for pies
 in later sections.

 For two players, the answer to Gale's question with respect to cake and with respect
 to pie is affirmative. We prove this for cake in Section 2 and for pie in Section 4.

 For three or more players, the answer to Gale's question is:

 • affirmative for cake, if the players' measures are absolutely continuous with respect
 to one another. This result follows from Gale's result, and we present it in Section 2.

 • negative for cake, if we do not require that the players' measures be absolutely con-
 tinuous with respect to one another. We give examples in Section 2 for different
 cases with three or more players.

 • negative for pie, regardless of any assumption about the absolute continuity of the
 players' measures with respect to one another. We give examples in Section 3 for all
 cases with three or more players.
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 While our main focus is on the existence of allocations that are envy-free and un-
 dominated, we shall also consider the existence of allocations that are equitable: an
 allocation is equitable if all players assign exactly the same value (in their respec-
 tive measures) to the pieces or sectors they receive (and so no player envies another's
 "degree of happiness").

 Finding procedures, sometimes only approximate ([13]), for producing certain de-
 sirable allocations - as opposed to merely demonstrating that such allocations exist -
 is a central concern in the fair-division literature. In Section 5 we present two "moving-
 knife" procedures for pie-cutting.

 2. CAKE-CUTTING. In this section we cut cakes. Our starting point is Gale's the-
 orem [8] that when players' measures are absolutely continuous with respect to one
 another, every envy-free allocation is also undominated. This result, combined with
 well-known existence results for envy-freeness, tells us that if the players' measures
 are absolutely continuous with respect to one another, then there exists an allocation
 that is both envy free and undominated.

 Theorem 2.1.

 a. {Gale [8]). Any envy-free allocation of a cake among two or more players whose
 measures are absolutely continuous with respect to one another is also undomi-
 nated.

 b. For two or more players and any cake and corresponding measures, if the mea-
 sures are absolutely continuous with respect to one another, then there exists an
 allocation that is envy-free and undominated.

 Proof For part a, let (Si, S2, . . . , Sn) be an envy-free allocation (where, for each i -
 1 , 2, . . . , n, player i receives piece S,-), and let (Tx , T2, . . . , Tn) be any other allocation.
 If {Tu T2, . . . , Tn) consists of the same intervals as (Si, S2, . . . , Sn) but allocated to
 different players, then it is impossible that v,-(I/) > v,-(S,-) for any i (where v¡ denotes
 player /'s measure). This is because 7} is identical to some Sj, and v¡(Sj) < V/(S,-) by
 envy-freeness. Therefore (T', T2, . . . , Tn) does not dominate (Si, S2, . . . , Sn).

 Now suppose that the intervals of (ZÌ, T2, . . . , Tn) differ from the intervals of
 (Si, S2, . . . , Sn). In this case, some interval of (Tu T2, . . . , Tn) must be strictly con-
 tained in some interval of (Si, S2, . . . , Sn). (This statement is false for pies!) Suppose
 that Tj ç Si with 7) ^ S,-. Now vj(Tj) < Vj(Si) by the absolute continuity of the mea-
 sures with respect to one another, and v/(S,-) < Vj(Sj) by envy-freeness. It follows
 that Vj(Tj) < Vj(Sj), and hence the allocation (T', T2, . . . , Tn) does not dominate the
 allocation (Si, S2,...,Srt>.

 Part b follows from part a and the well-known fact (see, for example, [11], [13], and
 references therein) that, in this context, envy-free allocations always exist. ■

 The assumption that the players' measures are absolutely continuous with respect
 to one another is necessary for Gale's theorem. Envy-free allocations exist in any case,
 but if the measures are not absolutely continuous with respect to one another, then they
 need not be undominated.

 Theorem 2.2. For three or more players with measures that are not absolutely con-
 tinuous with respect to one another, there need not exist an allocation that is envy-free
 and undominated.

 Proof First suppose that there are three players, and let the cake be the interval [0, 1).
 Consider measures for players A, B, C as follows (where we observe that the 0 entry
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 for player A shows that players' measures are not absolutely continuous with respect
 to one another):

 Player A 5 ° I
 Mayer B i ¡ '

 Player C | 1 | 1 | f
 Each player's measure is uniform on each of the three segments shown. For ex-

 ample, vA(0, 1/12), vb(0, 1/12), and uc(0, 1/12) are 1/6, 1/12, and 1/12, respec-
 tively. Note that B's and C's measures are uniform on the entire cake, and that all of
 the measures are the same on [1/3, 1).
 Consider an allocation ( 5a , 5b , 5c ) . We will show that ( 5a , 5b , 5c ) is not both envy-

 free and undominated.

 First note that for (5A, 5B, 5C> to be envy-free, we must have v,-(S,-) > 1/3 for each
 / = A, B, C. That is, each player must receive at least 1/3 according to its own mea-
 sure.

 Now suppose that player A receives the leftmost piece: 5A = [0, x) for some x.
 If x > 1/3, then there is not enough cake left over for B and C to have at least 1/3
 each. If jc < 1/3, then B and C must divide the remainder of the cake equally in order
 that the allocation be envy-free; if, say, C receives the rightmost piece, then vA(SA) <
 1/3, but vA(Sc) = (1 - x)/2 > 1/3, again violating envy-freeness. If jc = 1/3, then
 the pieces are [0, 1/3), [1/3, 2/3), and [2/3, 1). This allocation is envy-free, but it is
 dominated by the allocation {TA, TB, 7c) where TA = [0, 1/6), TB = [1/6, 7/12), and
 Tc = [7/12, 1), since vA(SA) = 1/3, i;B(5B) = 1/3, and i>c(5c) = 1/3, but vA(TA) =
 1/3, vB(TB) = 5/12, and vc(Tc) = 5/12.

 If some other player has the leftmost piece, then again envy-freeness requires that
 the pieces be [0, 1/3), [1/3, 2/3), and [2/3, 1), and again the allocation is dominated
 by the one given above.

 If there are n players for some n > 3, the same approach works, with the players'
 measures given by the following table:

 Player A n ° ^
 All other players ¿ ¿ ^TT

 The proof is analogous to that for three players. ■

 The case of two players is excluded from the preceding theorem, and indeed it is
 special.

 Theorem 2.3. For two players and any cake and corresponding measures,

 a. there exists an allocation that is both envy-free and undominated;

 b. there exists an allocation that is both envy-free and equitable; and

 c. if the measures are absolutely continuous with respect to one another, then there
 exists an allocation that is envy-free, undominated, and equitable.
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 Proof. Choose x so that i>a(0, x) = vB(x, 1). We can always find such an x, because
 when x = 0, vA(0, x) < vB(x, 1), and when x = 1, the reverse inequality holds. Con-
 tinuity and the intermediate value theorem then guarantee that for some x, i>a(0, x) =
 vB(x, 1). Giving one of these pieces to each player (and denoting player A's piece by
 5A and player B's piece by 5b), we can assume that vA(SA) = i>b(Sb) - 1/2, because
 if not we can simply exchange pieces to make this true. This establishes part b. Part c
 then follows from Theorem 2.1a.

 For part a, we note that if the allocation (Sa, Sb) above is not undominated, then
 Theorem 2.1a implies that the players' measures are not absolutely continuous with
 respect to one another. In particular, if vA(SA) = ub(Sb) > 1/2, then it must be pos-
 sible to move x to the left or to the right some positive distance and have one player's
 valuation of its piece increase while the other player's valuation of its piece does not
 change. If vA(SA) = vB(SB) = 1/2, then either the move just described is possible, or
 else it is possible after the players exchange pieces. In either case (after exchanging
 pieces if necessary), if we move x from its original position so as to produce the great-
 est increase in one player's valuation of its piece while not changing the other player's
 valuation of its piece, then the resulting allocation will be envy-free and undominated.
 This establishes part a. ■

 For two players with measures that are not absolutely continuous with respect to
 one another, the methods used in the proof of Theorem 2.3 make it clear that

 • an envy-free and undominated allocation may fail to be equitable,

 • an envy-free and equitable allocation may fail to be undominated, and

 • there may be no allocation that is both undominated and equitable.

 3. PIE-CUTTING: THREE OR MORE PLAYERS. In this section we show that

 when a pie is to be divided among three or more players, it may be impossible to find
 an allocation that is both envy-free and undominated, or one that is both envy-free
 and equitable. But one that is both equitable and undominated always exists. These
 results hold even if the players' measures are absolutely continuous with respect to
 one another.

 Theorem 3.1. For three or more players, there exist a pie and corresponding mea-
 sures for which no allocation is envy -free and undominated.

 Proof. We give an example involving measures that are nearly uniform. We show that
 with these measures, no envy-free, undominated allocation is possible.

 Since the measures are nearly uniform, it is easy to find allocations of the pie that
 are almost envy-free and almost undominated. We don't know whether it is possible
 to find examples in which the discrepancies are much larger. Another example for
 the case of n = 3 is given in [12], but the measures are still nearly uniform and the
 discrepancies are still very small.

 Fix n > 3 and label the players 1, 2, . . . , n. For this proof, we represent the pie
 as the interval [0, n], with its endpoints identified. We also relax the requirement that
 each player's valuation of the entire pie be 1. (The requirement could be restored, at
 the cost of complicating our calculations, by rescaling our valuations.) We specify two
 constants for use throughout this section: C = n~s, and e = n~16.

 Figure 1 illustrates the players' measures. For i = 2, . . . , n, define the ith player's

 window to be the interval [/ - ',i + y). The endpoints are defined mod«, so the last
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 Figure 1. With these measures, no envy-free and undominated division is possible.

 two windows actually end at ' and y. Define the first player's window to be [0, 2).
 The windows are the white spaces in Figure 1 .

 With certain exceptions, the value of a piece to a player is

 • 1 per unit length inside the player's window, and

 • 1 - n~4 per unit length outside the player's window.

 The exceptions are as follows:

 For / = 2, . . . , n, player / assigns an extra value of C = n"8 to the segment
 [/ + ', i + |), spread uniformly over that interval. We call this interval the player's
 bonus cell.

 Player 1 has several positive and negative adjustments:

 • +C - £, uniformly over [0, ¿)

 • - C, uniformly over [|, |)

 • +C, uniformly over [|, |)

 • - C + £, uniformly over [|, |)

 • -C + e, uniformly over [£, |)

 • +C, uniformly over [|, |)

 • -C, uniformly over [|, ^)

 • +C - £, uniformly over [-^, 2)

 The adjustments are in addition to the normal value of 1 per unit length. For ex-

 ample, the actual value of the segment [0, ¿) to player 1 is ¿ + C - e, uniformly
 spread over the interval. We note that the players' measures are absolutely continuous
 with respect to one another.

 By way of contradiction, suppose we have found an allocation (Si, S2, . . . , S„) that
 is both envy-free and undominated. As usual, S, is the piece assigned to the / th player,
 and v¡ (Si) is player /'s valuation of his or her own piece. By the values vector we mean
 the vector (ui(Si), . . . , vn(Sn)), and by the total value of an allocation we mean the
 sum v' (SO + - - • + vn(Sn). We write d¡ for the length of S¡.

 We first show that the pieces must have a certain form. Each player's piece must be
 (mostly) within the player's window and have length (about) 1 , and the pieces must be
 in order around the pie; that is, Si+' is always immediately to the right of S¡. We make
 this precise in Lemmas 1 through 5.

 Lemma 1. Each piece has both value and length greater than 1 - n~4. That is, for
 each i, we have dl > 1 - n~4 and v¡(Si) > 1 - n~4. It follows that the total length L
 of any k consecutive pieces must satisfy k - n~3 < L < k + n~3.
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 Proof, Player l's valuation of the entire pie is ui(0, n) = n - (n - 2)(n~4) =
 n - n~3 + 2n~A. Player l's piece must have value

 n

 or else some other player's piece would have greater value than Si by player l's mea-
 sure. No piece can have value more than C = n"8 greater than its length, so both
 the value and the length must be greater than 1 - n~4. The same reasoning applies to
 players 2, . . . , n, whose valuations of the entire pie are slightly larger. ■

 Lemma 2. The total value satisfies v'(S') -'

 Proof. This follows from the assumption that the allocation is undominated. Sup-
 pose by way of contradiction that V'(S') -'

 {Ti, . . . , Tn) by starting at 0 and making each piece 7} have length v,-(S/):

 7i = [(WS,))

 and

 Ti = [vxiSrì + • • • + Vf-iCSi-i), vi (Si) + • • • + Vi(Si))

 for each /, except that to avoid wasting any of the pie we extend Tn to

 r„ = [vi(Si) + --- + !;ll-i(Sn-i),l).

 It follows from Lemma 1 that each 7} is within player i's window and avoids bonus
 cells (except for player 1, whose adjustments add to 0). So vt (7}) is equal to the length
 of Ti, and in each case that means that v,-(7}) = v,-(S¿), except that Tn is longer, so
 vn(Tn) > vn(Sn), and (Tu T2, . . . , Tn) dominates (Su 52, . . . , Sn). ■

 Lemma 3. If any players' pieces include parts outside of the players' windows, then
 the total length of these parts cannot exceed n~3.

 Proof Define the excess value of each piece S, to be v,-(S¿) minus d,, the length of
 S¡. From Lemma 2, the sum of the excess values must be at least 0. But no piece
 can contribute excess value greater than C = n~s. Parts outside the players' windows
 contribute an excess of -n~4 per unit length, so the total of all these lengths cannot
 exceed n~3. ■

 Lemma 4. The players' pieces are in order, with S/+i immediately to the right of Si
 for each i.

 Proof The ordering is forced by the arrangement of the windows. ■

 Lemma 5. For each i = 2, ...,«, player i f s piece (i.e., St) cannot include any part of
 player i 's bonus cell.

 Proof. Lemma 1 implies that the pieces have length about 1 , and hence they have about
 the same relative position within the players' windows. If player /'s piece includes a
 bonus cell, then player l's piece is forced to extend too far outside player l's window.

 ■
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 We are now ready to isolate the possibilities for (Si, . . . , Sn) and to eliminate
 them one by one. We do this in Lemmas 6 through 9. We recall that, by assumption,
 (Si, 52, . . . , Sn) is envy-free and undominated.

 Lemma 6. Si must have one of these forms:

 • [0, jc), or

 # [y, 2), or

 • [5 + *. § + y)> where 1*1 + lyi - K8-

 Proof From Lemma 5 we know that no other player's piece has value greater than
 its length. From Lemma 2, the values must sum to at least n. This means that V'(S')
 must be at least equal to the length of Si . Equivalently, the sum of the adjustments that
 influence v'(S') must be at least 0. The cases listed are the only possibilities.

 In the third case, the piece [5 , §) has excess value +2s, and moving either boundary
 by an amount t reduces that excess by 6tC = 6tn~*. Therefore, if the piece is to have

 excess at least 0, we must have 6tn~s < 2e = 2n~16. Therefore t < 'n~*. ■

 Lemma 7. Si / [0, 1) and Sx £ [1, 2).

 Proof If Si = [0, 1) or Si = [1, 2), then envy-freeness demands that each piece have
 length 1. Then, the values vector is (vi(Si), . . . , vn(Sn)) = (1,1,..., 1), and the al-
 location is dominated by the allocation in which T' = [1/2, 3/2) and all pieces have
 length 1, which has values vector (v'(T'), . . . , vn(Tn)) = (1 + 2e, 1, . . . , 1). This con-
 tradicts our assumption that (Si, S2, . . . , Sn) is undominated. ■

 Lemma 8. Si ^ [0, x)for any x ^ 1 and S' ^ [y, 2) for any y ^ 1.

 Proof Let Si = [0, jc). (The other case is symmetrical.) As usual, let dt denote the
 length of piece S¡. For each / = 2, . . . , n - 1, both Si+i and S, are within player
 /'s window, so the envy-freeness requirement vf(S/+i) < i>,(Si) forces di+i < di. The
 same reasoning for player n shows that d' < dn, so we have ultimately d' <dn <
 • • • <d2. Since jc ^ 1, the pieces are not all the same length, and hence we must have
 d' < 1 < ¿2-

 We will show that Vi(S2) > ^i(Si), contradicting the envy-freeness of (Si,S2,
 . . . , Sn). It is easy to check that vi(S') = d' < 1. But it is not necessarily the case that
 vi(S2) = d2, since the right end of S2 might extend beyond player Ts window, and
 even if it does not, the value V'(S2) is affected by player l's adjustments. We must
 therefore do some computing, using the fact that player 1 's value just to the left of 2 is
 1 + 6(C - s) per unit length. Therefore:

 vl(S2) = vl(dudl+d2)

 > vi(dudi + l)

 = Vl(0, 2) -^(O.dO -!;!(£/! + 1,2)

 = 2-d1-(2-(rf1 + l))(l+6(C-e))

 = l + (l-di)(6(C-£))

 > 1

 >vi(Si). M
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 Lemma 9. Si ^ [' + x, ' + y)for any x and y with 'x' + 'y' < 'n~*.

 Proof. Suppose Si = [' + jc, § + y) where |jc| + 'y' < 'n~*. For each / = 2, . . . ,
 n - 1, both S/+1 and S,- are within player f s window, and S/+i includes player /'s
 bonus cell. Envy-freeness forces

 di+i + C < df

 for each such /, and the same reasoning for player n forces d' + C < dn. We calculate:

 d' >dx

 dn>di+C

 dn-i^di+lC

 d2>dx + (n- 1)C.

 The sum of the lengths is n, so adding these inequalities gives

 rn(n-l)1
 n>nd{ + rn(n-l)1 ' 2 ' C>

 or

 dl<l.^LlRc<l-C = l-n-'

 But 1 - n~s < 1 - |n~8 < di, which implies that dx < du a contradiction. ■

 We have eliminated all of the possibilities for (Si , . . . , Sn>, and the theorem follows.
 ■

 Theorem 3.2. For three or more players, there exists a pie and corresponding mea-
 sures for which no allocation is envy -free and equitable.

 Proof First suppose that there are three players, and let the pie be the interval [0, 6],
 with its endpoints identified. Consider measures for players A, B, and C to be the
 following:

 Player A 1

 Player B ¿

 riayen | 36 | 36 [ 36 | 36 1 36 | 36

 Each player's measure is uniform on each of the six segments shown. Suppose, by
 way of contradiction, that (SA, SB, Sc) is an allocation that is envy-free and equitable.

 It will be convenient to refer to the zone of player B or C as the connected segment
 of pie of length 5 to which that player assigns value 35/36. Thus, for example, player
 B's zone is the segment [0, 1) U [2, 6). (This is a connected segment, since the points
 0 and 6 are identified.)
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 Consider player A's piece, 5a. We claim that this piece cannot be a subset of the
 zone of one of the other players. Suppose, for example, that SA is a subset of player B's
 zone. Then vB(SA) > va(Sa)- But equitability demands that vA(SA) = vB(SB). Hence,
 vB(SA) > vb(Sb)- This contradicts the envy-freeness of the allocation, and thus SA
 cannot be a subset of the zone of player B or C. We note that any segment of length at
 most 2 is a subset of the zone of player B or C, so SA must have length greater than 2.

 Any segment of length greater than 2 must include a segment of length at least 2
 within either player B's zone or player C's zone (or both). Assume, without loss of
 generality, that SA includes a segment of length at least 2 within player B's zone. Then
 vb(Sa) > (2) (7/36) = 7/18. But envy-freeness implies that vB(SB) > vB(SA), and
 hence vB(SB) > 7/18. The equitability of the allocation tells us that vc(Sc) > 7/18.

 Finally, we observe that vB(SB) > 7/18 implies that SB has length at least 2, and
 vc(Sc) > 7/18 implies that Sc has length at least 2. We have already shown that 5A has
 length greater than 2. This is a contradiction, since the pie has length 6. We conclude
 that there is no allocation of this pie that is envy-free and equitable.

 This result generalizes to more than three players in a natural way. For n players, we
 let the pie be the interval [0, n(n - 1)] and assign measures to the players in a manner
 entirely analogous to the above. For four players, A, B, C, and D, the measures would
 be as follows:

 Player A ^

 P1íivf>rR d il J_ il il il il riayci d 144 144 144 144 144 144

 PlaverC noy^i ^ il il il il il J-
 noy^i ^ 144

 PiaverD ^ il il il il il il riay^L ^ | 144 | 144 | 144 | 144 | 144 | 144

 Piaver /^ A - - - - - -
 riayci /^ - 12

 PlaverB ridaci o il il il il il il
 PlaverB ridaci o 144 144 144

 pioverC v^ il il il il il il
 riayci v^ 144 144 144

 Piaver D LJ il il il J- il il riayci LJ | 144 | 144 | 144 | 144 | 144 | 144

 We omit the details showing that there is no envy-free and equitable allocation of
 this pie, and the details of generalizing to more than four players. ■

 So far we have shown that for three or more players, there are pies for which no
 allocation is both envy-free and undominated, and there are also pies for which no
 allocation is both envy-free and equitable. However, for the third pair of properties,
 equitable and undominated, the story is different: there always is such an allocation
 for pie (as well as for cake; see [3]), assuming that the measures are absolutely con-
 tinuous with respect to one another. It is not hard to see that there are many equitable
 allocations. To show that one of these equitable allocations must also be undominated,
 one can use the continuity of the measures and the fact that the pie is a compact set
 to show that there is a "best" equitable allocation P (i.e., one in which the common
 value that players assign to their pieces in allocation P is at least as great as it is in any
 other equitable allocation). If some other allocation Q dominated P, then it would be
 possible (using the absolute continuity of the measures with respect to one another) to
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 shift the boundaries in Q to find an equitable allocation that dominated P, thus obtain-
 ing an equitable allocation in which the common value to each player is bigger than in
 P, which is a contradiction.

 To illustrate an equitable and undominated allocation in the example used to prove
 Theorem 3.2 for three players (it is not unique), give player C the first segment and
 17/19 of the second segment, player A 2/19 of the second segment, the third and
 fourth segments, and 2/19 of the fifth segment, and player B 17/19 of the fifth seg-
 ment and the sixth segment. Each player thereby obtains a value of 7/19, but this
 equitable allocation is not envy-free, because players B and C think player A has ob-
 tained 47/1 14 and so will envy player A because they each perceive player A to have
 (47/114) - (7/19) = 5/114 more than they do. By the same token, an envy-free and
 undominated allocation would be to give player C the first two segments, player A the
 next two, and player B the last two (7/18 to A, 1/3 to B, 7/18 to C), but this allocation
 is obviously not equitable.

 4. PIE-CUTTING: TWO PLAYERS. We next analyze pie-cutting for two players,
 for which there are more positive results than we found for pie-cutting when there are
 three or more players. Consider two players A and B who receive pieces [a, ß) and
 [ß, a + 1) and assign to them the values vA(a, ß) and i>B(j8, a + 1), respectively. The
 pair (vA(a, ß), vB(ß, ol + 1)) is a point in the closed unit square [0, 1] x [0, 1]. Let *I>
 denote the set of points that arise this way. Thus,

 V = {(vA(a, ß), vB(ß, a + 1)) : 0 < a < 1 and a < ß < a + 1}.

 The points (1,0) and (0, 1), for instance, are always points of *I>. Let

 * = {[«> ß) I 0 < « < 1 and a < ß < a + 1}

 be the set of possible pieces for A; then *I> is the continuous image of 4> under the map
 [a, ß) '-> (fA (a, ß), vB(ß, oí + 1)). Any point of *I> lying on the main diagonal of the
 square corresponds to an equitable allocation, and any point in the upper-right closed
 quarter [1/2, 1] x [1/2, 1] corresponds to an envy-free allocation. The construction of
 ^ resembles the IPS construction in [1].

 To determine whether a point P of ^ corresponds to an undominated allocation,
 draw horizontal and vertical axes centered at P and label the four (closed) quadrants
 Ip, Up, Hip, and TV />, as illustrated in Figure 2. If the only point of *I> contained in
 quadrant IP is P, then P corresponds to an undominated allocation. Our goal is to
 determine whether points with some, or all, of these properties exist.

 The continuity of players' measures shows that *I> possesses four key features:

 Lemma 10.

 a. ^ is closed.

 b. *I> is path connected.

 c. ^ is symmetric with respect to the point (1/2, 1/2).

 d. If P and Q are two points of ^ with the same x -coordinate or the same y-
 coordinate, then line segment PQ lies in *I>.

 Proof. Parts a and b follow from the fact that ^ is a continuous image of the com-
 pact, path-connected set O, and is, therefore, itself compact and path connected. Part
 c follows from the fact that A and B can exchange pieces, and

 (vA(a, ß), vB(ß, a + 1)) = (1 - vA(ß, a + 1), 1 - vB(a, ß)).
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 Figure 2. Quadrants used to determine whether an allocation is undominated.

 To prove d, without loss of generality suppose P and Q have the same jc -coordinate
 a. Let (a, b) be any point on the segment PQ, and define U and V as follows:

 U = {a e [0, 1] : for some ß with a < ß < a + 1,

 vA(a, ß) = a and vB(ß, a + 1) > b]

 V = {a <E [0, 1] : for some ß with a < ß < a + 1 ,

 vA(a, ß)=a and vB(ß, a + 1) < b)

 Then £/ and V are both closed.

 For any a e [0, 1], vA(a, ß) - a for some /3 with a < ß < a + 1, and thus either
 aei/oraeV.It follows that Í/ U V = [0, 1].

 Since P and ß are both in vj/, we know that U / 0 and V ^ 0. The interval [0, 1]
 cannot be expressed as the union of two disjoint closed sets, and hence U DV ^ 0.
 Choose any a e U n V. Then, for some ß{,ß2 e [0, 1], vA(a, ß,) = vA(«, ft) = a
 and uB(^!, a + 1) < b < vB(ß2, a + 1). If ß' = ß2, set ß equal to this common value.
 If ß' ^z ßly then the continuity of uB and the intermediate value theorem imply that for
 some ß between ß' and ft, uB(ft a + 1) = b. In either case, we must have vA(a, ß) =
 a. Thus, (a, b) e *!>. This establishes that line segment PQ lies in *I>. ■

 Parts b, c, and d of Lemma 10 imply that (1/2, 1/2) is always a point of *!>. It
 is also not difficult to see that (1,0) and (0, 1) are the only points of ^ that belong
 to the boundary of the unit square if, and only if, the measures of the two players
 are absolutely continuous with respect to one another. In this case, each horizontal
 and each vertical cross-section of *I> away from (1,0) and (0, 1) has endpoints in the
 interior of the unit square.

 Figure 3 illustrates four possibilities for the set ^. If the players' measures are
 equal, then *I> consists only of the diagonal between (1,0) and (0, 1), as shown in
 Figure 3a. The *I>'s in Figures 3a and 3b correspond to measures that are absolutely
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 Figure 3. Some possibilities for the set vj/.

 continuous with respect to one another, while the ^'s in Figures 3c and 3d correspond
 to measures that are not.

 Curiously, for two players the result for pies is exactly the same as the result for
 cakes. (See Theorem 2.3.)

 Theorem 4.1. For two players and any pie and corresponding measures,

 a. there exists an allocation that is both envy-free and undominated;

 b. there exists an allocation that is both envy-free and equitable; and

 c. if the measures are absolutely continuous with respect to one another, then there
 exists an allocation that is envy-free, undominated, and equitable.

 Proof For part a, let *l>Mr denote the intersection of *I> with the closed upper-right
 quarter of the unit square (i.e., [1/2, 1] x [1/2, 1]). Then ^ur is a closed set. The
 function F : (je, y) h* x + y is a continuous function from 4>Mr to R. By the extreme
 value theorem, there exists a point P in Vur for which F attains a maximal value. Any
 allocation that corresponds to this point is envy-free and undominated.

 We have already shown that (1/2, 1/2) is in 4/. This point corresponds to an allo-
 cation that is envy-free and equitable, and this establishes part b.

 Finally, for part c, assume that players' measures are absolutely continuous with re-
 spect to one another, and let P be the rightmost point of *I> on the main diagonal of the
 unit square. Clearly, any allocation that corresponds to P is envy-free and equitable.
 Our goal is to show that any such allocation is also undominated.

 Suppose, to the contrary, there is a point Q of *!> different from P in quadrant IP.
 This point does not lie on the main diagonal of the unit square. Assume, without loss
 of generality, that it lies above the main diagonal.
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 Now Q = (vA(a, jö), i>B(j8, ol + 1)) for some sector [a, ß). Using continuity, and
 the fact that the measures are absolutely continuous with respect to one another, we
 can adjust the values of a and ß to produce a second point lying in the interior of
 Ip with jc-coordinate larger than the x -coordinate of Q (and ^-coordinate necessarily
 smaller). Thus, without loss of generality, we can assume Q has x -coordinate larger
 than P's.

 Since 4> is path connected, there is a path X from (1/2, 1/2) to (1, 0) consisting of
 points from *I>. As P is the rightmost point of *I> on the diagonal, A. does not cross the
 main diagonal in IP. Consequently there is a point R on X with the same x-coordinate
 as Q lying below the main diagonal. That QR ç ty provides a contradiction to the
 choice of P. This establishes part c and completes the proof of the theorem. ■

 It follows from the theorem that Gale's question has an affirmative answer for pie-
 cutting involving two players, regardless of whether the measures are absolutely con-
 tinuous with respect to one another.

 The final three paragraphs of this proof can be readily modified to show that when
 the measures are absolutely continuous measures with respect to one another, the right-
 most point along any horizontal cross-section of * corresponds to an undominated
 allocation of sectors, as does the topmost point of any vertical cross-section. Loosely
 speaking, every point along the upper boundary of *I> corresponds to an undominated
 allocation. (The upper boundary might be called the "efficient frontier.")

 The assumption that the measures are absolutely continuous with respect to one
 another is necessary for the proof of part c of Theorem 4.1. Suppose, for example,
 that B's measure is uniform (that is, vB(a, ß) = ß - a always) but that A's measure is
 concentrated uniformly on the subset [0, 1/4] U [1/2, 3/4] (that is, vA(a, ß) is twice
 the length of the intersection of [a, ß) with that set). These measures produce the
 set *I> shown in Figure 3d, in which no point corresponds to an envy-free, equitable,
 and undominated allocation. In fact (again, precisely as is the case in two-player cake
 division), this example illustrates that, in general, if the measures are not absolutely
 continuous with respect to one another, then there need not be an allocation that is
 both undominated and equitable.

 We close this section by considering a special case of pie-cutting for two players.
 Suppose we insist that the two players, A and B, are allowed to cut only along a di-
 ameter of the pie. Construct the subset *¿ of the closed unit square given as the set of
 all points of the form (i;A(a, a + 1/2), vB(a + 1/2, a + 1)) for a € [0, 1). Then *¿
 is a (possibly self-intersecting) loop within the closed unit square, symmetric about
 the center of the square. As before, one is guaranteed allocations that are envy-free
 and equitable, or envy-free and undominated, but not all three properties. Suppose, for
 example, that B's measure is uniform but that A prefers the first half of the pie. Specif-
 ically, A assigns a value of 3/2 per unit length in the interval [0, 1/2), but only 1/2 per
 unit length in the interval [1/2, 1). In this case, *I>¿ is the horizontal line segment be-
 tween (1/4, 1/2) and (3/4, 1/2), and no point of *I>¿ corresponds to an allocation that
 is simultaneously envy-free, equitable, and undominated. Note, too, that these players'
 measures are absolutely continuous with respect to one another.

 5. PIE-CUTTING: PROCEDURAL RESULTS- Establishing the existence of an
 allocation with certain properties is not the same as producing it. In this section we
 consider procedures, or algorithms, for finding desirable allocations of a pie. These
 procedures assume that players move knives continuously, whereas discrete proce-
 dures assume that players make choices at discrete times. For examples of each type
 of procedure, see [5], [10].
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 Moving-knife procedures were first applied to dividing a cake among n players
 using n - 1 parallel, vertical cuts (the minimal number). Two minimal-cut envy-free
 moving-knife procedures for three players have been found ([2], [11]), but no minimal-
 cut four-player envy-free procedure is known. An envy-free procedure for four players
 that requires up to five cuts - two more than the minimal number of three - is known,
 but it may necessitate that players receive disconnected pieces ([2]; see also [7]).

 For pie, as we have seen, there is always an envy-free, undominated allocation for
 two players, but for three players, we may have to settle for an envy-free allocation that
 is dominated. Next we address how to find allocations that are envy-free, undominated,
 or equitable.

 We present two procedures, one for two players and one for three players. The
 two-player procedure will produce an allocation that is envy-free and undominated but
 need not be equitable, and the three-player procedure will produce an allocation that
 is envy-free but need not be either undominated or equitable.

 Two-player procedure. This procedure produces an envy-free and undominated al-
 location for two players. First assume that their measures are absolutely continuous
 with respect to one another. Call the two players player A and player B, whom we
 shall refer to as "she" and "he," respectively. Player A holds two radial knives above
 the pie in such a way that, in her view, the two sectors of pie determined by these
 knives each have value 1/2. She then rotates these knives continuously, all the way
 around the pie, maintaining this 1/2 value of the sectors until the knives return to their
 original positions. After observing this process, player B identifies the position that, in
 his view, gives the maximum value to one of the two sectors so determined. (Ties can
 be broken randomly. The continuity of the players' measures, along with the extreme
 value theorem, guarantees that there is such a maximum-value sector.) Player B takes
 this sector, and player A receives the other sector. Call this allocation P.

 We claim that P is envy-free and undominated. To see that P is envy-free, we first
 observe that player A certainly believes that her sector has value exactly 1/2, and so
 she will not envy player B. Player B does not envy player A since, if he does, then
 he must have picked the smaller sector, rather than the larger sector, at his chosen
 position. Thus, P is envy-free.

 Suppose, by way of contradiction, that some allocation Q dominates P. Then, both
 players receive at least as much pie in allocation Q as in allocation P (in each player's
 own view), and at least one player receives strictly more. The absolute continuity of
 the measures with respect to one another allows us to alter Q, if necessary, so as to
 give player A less pie and player B more pie, and in this way to obtain an allocation
 R such that player A receives the same value of pie (in her view) in allocation R as in
 allocation P (i.e., value 1/2), and player B receives strictly more value of the pie (in
 his view) in allocation R than in allocation P. Then the sector that player B obtains
 in allocation R is one of the sectors that he would have seen as player A rotated the
 knives around the pie. This contradicts the fact that player B chose the largest sector
 that he saw.

 This establishes that the allocation is envy-free and undominated. It will be equi-
 table if and only if any sector of pie that player A considers to be half of the pie is also
 considered to be half of the pie by player B. In general, of course, this will not be the
 case.

 Without absolute continuity, the same procedure works, but more care must be
 taken. The problem is that the location of one of As knives may not determine the
 location of the other one, and the procedure may not reveal all of the relevant choices
 to B. To remedy this, we must refine the procedure. We imagine player A moving one

 510 © THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 116

This content downloaded from 130.58.65.20 on Wed, 19 Oct 2016 15:47:19 UTC
All use subject to http://about.jstor.org/terms



 of the knives slowly around the pie, and using the other knife to maintain the 1/2-1/2
 values of the two sectors so determined, in her view. If the second knife comes to a

 sector that player A values at 0, player A immediately (i.e., discontinuously) moves
 this second knife to the other end of this sector, and then she continues to move both

 knives as before. Thus, one position of the first knife can correspond to two positions
 of the second knife, and the sectors so determined by each of these positions are possi-
 bilities from which player B can choose. If both of A' s knives reach zero- value sectors
 at the same time, A must reveal to B all four extreme possibilities before proceeding.

 What happens if one or both players are not truthful? For example, player A could
 rotate the knives in such a way as to maintain a 1/3-2/3 balance in her view and, if
 player B then chooses the 1/3 sector, player A ends up with what she thinks is 2/3 of
 the pie instead of 1/2. But, of course, player A could also end up with 1/3 of the pie
 instead of 1/2. Thus, we see that players can do better, or worse, by not being truthful.
 What is true, however, is that by being truthful, each player is guaranteed a sector of
 size at least 1/2 (in each player's own view) and, hence, will not envy the other player,
 regardless of whether or not the other player is truthful. Players who are risk-averse
 will presumably like this procedure, because it maximizes the minimum- value sectors
 that players A and B can ensure for themselves.

 To relate this procedure to the set *I> in Section 4, note that the procedure moves
 along the line segment that is the intersection of the line x = 1/2 and the set *. In
 picking his largest sector, player B is identifying an allocation that corresponds to the
 point on the line segment with greatest y coordinate. (There is a largest such point,
 because ^ is a closed set.)

 We do not know whether there is a moving-knife procedure to produce an alloca-
 tion that is envy-free, undominated, and equitable. If we insist that the measures be
 absolutely continuous with respect to one another, such an allocation is known to exist
 (see Theorem 4.1c and [9]).

 Three-Player Procedure. This procedure produces an envy-free allocation for three
 players. We call the three players player A, player B, and player C and refer to them
 as "she," "he," and "it," respectively. We assume that the three players' measures are
 absolutely continuous with respect to one another.

 Player A rotates three radial knives continuously around the pie, maintaining what
 she believes to be 1/3-1/3-1/3 sectors. Player B calls "stop" when he thinks two of
 the sectors are tied for largest, which must occur for at least one set of positions in the
 rotation (see below). The players then choose sectors in the order C first, B second,
 and A third.

 We must show that at some point player B will think that two of the sectors are tied
 for most- valued, and that the allocation produced by this procedure is envy-free.

 To show that there must be at least one set of knife positions in the rotation at
 which player B thinks there are two sectors that tie for most-valued, let us call the
 three sectors determined by the beginning positions of the knives sector /, sector fi,
 and sector Hi. (These sectors will change as player A rotates the knives.) Let player B
 specify his most- valued sector at the start of the rotation. If there is a tie, then we are
 done. If not, then player A begins rotating the three radial knives. We assume, without
 loss of generality, that player B's most- valued sector at the start of the rotation is sector
 i, and that player A rotates the three knives in such a way that sector i moves toward
 the original position of sector ii. Because, in player A' s view, each of the three sectors
 is 1/3 of the pie, sector i will eventually occupy the position of the original sector if,
 which we make a requirement of the procedure. At this point, sector Hi occupies the
 original position of sector /, which we also make a requirement, and hence player B
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 must think that this new sector in is the largest sector. Because, in player B's view,
 sector i starts out largest and another sector becomes largest as the rotation proceeds,
 it follows from the continuity of the players' measures and the intermediate value
 theorem that there must be a position in the rotation when player B views two sectors
 as tied for largest.

 To see that the procedure gives an envy-free allocation, note that the first player to
 choose, player C, can take a most- valued sector, so it will not be envious. If player C
 takes one of player B's tied-for-most- valued sectors, player B can take the other one;
 otherwise, player B can choose either of his two tied-for-most- valued sectors. Because
 player A values all three sectors equally, it does not matter which sector she gets.

 Finally, we make two observations. First, this procedure may fail to give an allo-
 cation that is either undominated or equitable, just as the two-player procedure may
 not give an allocation that is equitable. Also, like the two-player procedure, the three-
 player procedure does not rely on the players' being truthful. In other words, if any
 player misrepresents her or his or its valuations of sectors of pie (for example, if player
 A moves the knives in such a way that the sectors are not maintained at value 1/3-1/3-
 1/3 in her view, or if player B calls "stop" at some time other than when there is a
 tied-for-largest sector in his view), it is still the case that any player that is truthful
 will not envy any other player's portion in the resulting allocation, regardless of the
 truthfulness of the other players.

 6. CONCLUSIONS. Our results are summarized in Table 1. In the table, "General
 Existence" means for any measures (i.e., with no assumption that the measures be ab-
 solutely continuous with respect to one another), and "Existence with Absolute Con-
 tinuity" means that we require the measures be absolutely continuous with respect to
 one another. We note that this distinction is only needed for cake, not for pie.

 Table 1. Existence of envy-free and undominated allocations

 Envy-Free and Undominated Allocation for
 Cake Pie

 Number of General Existence with Existence with or

 Players Existence Abs. Cont. without Abs. Cont.

 Two Yes Yes Yes

 (Thm. 2.3a) (Thm. 2. lb) (Thm. 4. la)

 Three or More No Yes No

 (Thm. 2.2) (Thm. 2.1b) (Thm. 3.1)

 We close by posing two pie-cutting questions we were not able to answer.

 Open Question 1. For two players with measures that are absolutely continuous with
 respect to one another, is there a moving-knife procedure that produces an allocation
 that is envy-free, undominated, and equitable?

 If we allow a "procedure" in which the players submit their measures to a referee,
 the referee can determine the cuts that give such an allocation, as shown in [4]. But we
 know not even an approximate procedure by which two players can, by themselves,
 equalize their shares, in each player's eyes, so as to render an envy-free and undomi-
 nated allocation also equitable.
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 Finally, we recall that for any pie and any number of players with measures that are
 absolutely continuous with respect to each other, there is always an allocation that is
 equitable and undominated. (See the discussion following the proof of Theorem 3.2.)
 Must there be such an allocation that is also envy-free? Theorem 3.2 tells us that the
 answer is "no" when there are three or more players. On the other hand, there are
 examples where there is such an allocation. (One trivial example is when the players'
 measures are all the same.) So we close by asking the following question:

 Open Question 2. For three or more players with measures that are absolutely con-
 tinuous with respect to each other, are there necessary and sufficient conditions that
 distinguish pies for which there is an envy-free, equitable, and undominated allocation
 from those in which there is not?
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 The Laguerre Polynomials Preserve Real-Rootedness

 The study of linear transformations that map polynomials with all real roots to
 polynomials with all real roots has been of interest for many years [1, 2]. We say
 that such transformations preserve real-rootedness. Notice that a linear trans-
 formation acting on polynomials can be defined by specifying its action on the
 polynomials x".

 Theorem. If Ln(x) is the nth Laguerre polynomial then the linear transforma-
 tion defined by xn h» Lu(x) preserves real-rootedness.

 Proof. We recall a basic result from [2, Part V, No. 65]: if T is the transforma-
 tion xn h-> xn/n', then T preserves real-rootedness. The Laguerre polynomials
 satisfy [3, p. 101]

 *=o v/c/ K-

 and this polynomial equals T[(' - x)"]. Thus the linear transformation xn f->
 Ln(x) is the composition of two linear transformations preserving real-rooted-
 ness, namely x" h» (1 - x)n and 7' and so preserves real-rootedness.

 ■
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