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Abstract

We present a novel approach to legged locomotion over rough terrain that is thoroughly rooted in
optimization. This approach relies on a hierarchy of fast, anytime algorithms to plan a set of footholds,
along with the dynamic body motions required to execute them. Components within the planning frame-
work coordinate to exchange plans, cost-to-go estimates, and “certificates” that ensure the output of an
abstract high-level planner can be realized by lower layers of the hierarchy. The burden of careful en-
gineering of cost functions to achieve desired performance is substantially mitigated by a simple inverse
optimal control technique. Robustness is achieved by real-time re-planning of the full trajectory, aug-
mented by reflexes and feedback control. We demonstrate the successful application of our approach in
guiding the LittleDog quadruped robot over a variety of rough terrains. Other novel aspects of our past
research efforts include a variety of pioneering inverse optimal control techniques as well as a system for
planning using arbitrary pre-recorded robot behaviors.

1 Introduction

Legged locomotion has been a key area of robotics research since nearly the inception of the field (Raibert,
1986); however, robots that can skillfully and deliberatively traverse rough terrain have yet to be fielded

Figure 1: Boston Dynamics Inc. LittleDog quadruped robot, shown crossing several types of rough terrain.
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outside of the laboratory. Some outdoor robots are beginning to address this problem by using inherent me-
chanical stability and/or well-tuned feedback control to overcome small- to medium-sized obstacles (Saranli
et al., 2001; Buehler et al., 2005). Although both mechanism design and low-level control are vitally impor-
tant, ultimately what is needed is a suite of algorithms for rough terrain locomotion, capable of reasoning
about not only the path the robot should take to navigate through the world, but what actions the robot
should perform to realize the path safely.

The Robotics Institute is one of six institutions participating in the DARPA Learning Locomotion project,
aimed at producing algorithms for robust legged locomotion over rough terrain. Participants develop software
for the LittleDog robot, designed and manufactured by Boston Dynamics, Inc., and the software is evaluated
upon the speed with which the robot can cross a set of standardized terrains. Each phase of the project has
presented successively more difficult terrain to traverse as well as a higher “goal” speed metric to pass. By
the end of Phase III, LittleDog was required to traverse obstacles up to 10.8 cm height at speeds in excess
of 7.2 cm/s. Scaled up to human size, this is analogous to moving over hip-height boulders at just below a
normal walking pace.

The LittleDog robot is driven by geared motors, with two degrees of freedom at each hip, and one at the
knee. Aside from onboard joint encoders and three-axis force sensors in each foot, sensing is provided by a
multi-camera motion capture system that tracks the position and orientation of the robot and the terrains.
The robot is controlled wirelessly by an offboard control computer, and the control software has access to
detailed 3D triangle mesh models of the terrain.

1.1 Research contributions

In this article, we present our planning and control software for LittleDog. Our approach to rough terrain
locomotion is thoroughly rooted by optimization. Where possible, optimization is augmented by the use of
machine learning techniques which serve not only to increase performance, but also to relieve system designers
from the burden of tedious and error-prone tasks. Our software has been used successfully throughout the
Learning Locomotion project in order to traverse a broad range of terrains and our methods constitute a
number of novel achievements in the fields of planning, imitation learning, and optimization. In the first
year of the program, we developed what we believe is the first ever implementation of footstep planning on
a rough terrain robot Chestnutt (2007), as well as the first general solution of an Inverse Optimal Control
problem on a robotic platform Ratliff et al. (2007c).

More recently, we have developed a framework to record and play back specialized behaviors and to
generalize behaviors to novel situations. This “trajectory library” approach is the first of its kind to reason
about full-body obstacle avoidance (Stolle, 2008). We have also developed a general preference learning
framework that relieves the system designer from the burden of manually specifying a cost function for an
optimal planner (Zucker, 2009). Finally, we have developed CHOMP, a numerical optimization tehnique to
make sure that the trajectories commanded to the robot are smooth, stable and collision free (Ratliff et al.,
2009b).

The strength of these contributions has been validated by other teams’ decisions to adopt and extend
our strategies in their own approaches. Most prominently, many teams ended up using a footstep planning
approach to navigate the robot towards the goal (Kolter et al., 2008). Others have also extended our method
of formulating preference learning of cost functions as a ranking problem by considering terrain templates as
additional high-dimensional features (Kalakrishnan et al., 2009). Furthermore, our approach to trajectory
optimization has been adopted as well (Kalakrishnan, 2009).

1.2 Organization of this article

In the next section, we give a general overview of the system architecture. Section 3 reviews primitive
operations for kinematics and obstacle avoidance. Sections 4 and 5 detail footstep planning and footstep
trajectory optimization. In section 6 we describe low-level control strategies. Specialized behaviors for non-
gaited locomotion are reviewed in section 7, and additional imitation learning work is described in section 8.
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Figure 2: System block diagram. A hierarchy of planners and optimizers generates complex full-body
locomotion behavior.

For the most part, this article describes the functionality of the current software as of the final Learning
Locomotion trials; however, it is important to note that the work described in this document represents
the combined effort of a number of researchers over a time frame of more than three years. Hence, not all
results presented here have been combined into a single software architecture. The techniques described
in sections 7.1 and 8 in particular are not implemented in the current software, but we include them here
because the research is nonetheless valuable to the overarching theme of the Learning Locomotion project.

2 System Overview

Our approach to system design is strongly motivated by the desire to build an optimal controller for rough
terrain locomotion. Due to the complexity of the task and the high degree of actuation of the robot, fully
optimizing over the space of all possible robot motions is intractable; instead, we decompose the problem
into a pipeline of smaller optimization tasks.

The components of the system are depicted in figure 2. First, the system selects a sequence of footholds
on the terrain through the use of a footstep planner, which is guided by a cost map learned from expert
preferences. The footstep plan is realized by generating full-body trajectories, which are passed through
an optimizer in order to maximize clearance from obstacles and ensure smooth, dynamically stable motion.
The system operates in real-time, capable of recovering and re-planning in the event of slips or accidental
collisions with the terrain.

The theme of nesting planners within planners in a hierarchy of representations ranging from abstract
to concrete arises in multiple places throughout our framework. Our footstep planner solves the task of
navigation at an abstract level relative to the full-body trajectory optimizer; however, the footstep planner
itself is informed by a heuristic that models the robot as a yet simpler wheeled vehicle.

Choosing the correct problem decomposition is crucial. Other participants in the Learning Locomotion
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project have chosen to plan a path for the robot’s trunk at the lowest level (Kolter and Ng, 2007; Kolter et al.,
2008; Kalakrishnan et al., 2009). After these systems make a hard commitment to a particular body path,
they choose footholds along the path, and finally generate full-body trajectories to execute the footsteps. We
believe our software is capable of walking over a wider range of terrains (particularly long gaps or chasms)
because the body path planner at the most abstract level of our competitors’ software is too conservative
relative to the full range of possible footholds.

Where possible, we avoid hard commitments to decisions at an abstract level that might lead to mistakes
at a deeper level of the hierarchy. We prefer instead to rate alternatives with continuous cost functions, and
to “lift up” the intermediate results of abstract planners into the full problem space to minimize the need
for backtracking through the pipeline. We view the use of continuous heuristics such as the wheeled vehicle
heuristic as more general than making fixed choices about problem decomposition because heuristics allow
the overall planning approach to retain flexibility in adapting to the terrain while still guiding the search
with domain specific knowledge about the capabilities of the platform.

3 Kinematics and Obstacle Avoidance

In this section, we describe two low-level optimization routines which are used by a variety of system
components in order to ensure kinematic feasability, and to maximize clearance from obstacles. Given a
full 18-DOF robot configuration consisting of body position and orientation, as well as all four sets of leg
joint angles, both of these routines find a nearby body position and orientation and leg joint angles that
accomplish the objective (kinematic feasibility or obstacle avoidance) while leaving the four foot positions
unchanged.

Another way to envision the effect of these routines is constrained gradient descent; keeping the four
foot positions unchanged imposes a 12-dimensional constraint manifold in the 18-DOF configuration space.
These routines identify the steepest descent directions of the objectives along the tangent of the constraint
manifold.

In our current software architecture, neither routine is used directly for control of the robot; instead,
both routines are designed to be run iteratively as drivers for a gradient-based search scheme. Both the
“certificate” search procedure described in section 4.4 as well as the trajectory optimization described in
section 5 use these low-level routines to generate gradients.

3.1 Conventions and coordinate frames

Commonly used variable notations:

x Robot position, defined as center point of hip joints
R Robot rotation matrix
ω Angular rates or differential rotation
f Foot position, defined as center of spherical foot
p Arbitrary reference point on robot
q Joint angles for leg
i Leg index

Subscripts are used to index legs, e.g. qi. Subscripts W and B are used to denote either world or body frame
for vectors, e.g. pW . If subscripts are omitted, the point is assumed to be in the world frame. Transforming
from body to world frame is accomplished via the transformation

pW = RpB + x

And inversely,
pB = RT (pW − x)
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The inverse kinematics solution of the joint angles to place the foot of leg i at position f i given a body pose
(x,R) is written as

qi = IKW (x,R, f i)
= IKB

(
RT (f i − x)

)
If no solution is possible, the IK is assumed to return the closest reachable position. The forward kinematics
to reconstruct foot position from joint angles is denoted

f ′i = FKW (x,R,qi)
= R FKB(qi) + x

Finally, we use [u]× to denote the skew-symmetric matrix such that [u]× v is equal to the cross product of
u and v.

3.2 Increasing kinematic reachability

At times, given the desired foot positions, the current body pose (x,R) may be kinematically infeasible in
the sense that there exists no set of joint angles qi for leg i that leaves the foot at the desired foot position
f i. This could be because the body pose was determined by an initial heuristic that incorrectly positioned
the body, or because other optimization objectives (such as obstacle avoidance or stability) have driven the
body past the limit of kinematic reachability.

In this case, we improve reachability by imposing a virtual force on the body at the best achievable
position of foot i, with direction moving it towards the desired position. Let qi be the closest reachable
position returned by IKW (x,R, f i), and let f ′i be the forward kinematic position corresponding to qi. Then
set ei = f i − f ′i to be the difference between the desired and actual foot positions. To impose the virtual
force, we compute the body translation and rotation displacements (∆x, ω) as:

∆x = α
∑

i

ei, and ω = β
∑

i

(
(f ′i − x)× ei

)
where α and β represent step sizes for rotation and translation, respectively.

3.3 Distance query

In our framework, computing the distance between LittleDog and the terrain for a particular robot con-
figuration is a very frequent operation. Because of their fast runtime and the ability to extract gradient
information, we have found that signed distance fields are an ideal representation for distance query and
collision checking computation. A signed distance field d(x) stores the distance from any point x ∈ R3 to
the boundary of the nearest terrain obstacle. Values are negative inside obstacles, positive outside obstacles,
and zero at the boundary.

In our software, the signed distance field is built when the software first encounters a new configuration
of terrain. We first discretize the world into a uniform lattice (typically with 5 mm resolution). Next, we
scan-convert the triangle-mesh representation of the environment into a boolean-valued voxel map – any
voxels which intersect a triangle are assigned value 0; other voxels are assigned value 1. Then we compute
the Euclidean Distance Transform (EDT) for the voxel map. Computing the EDT is surprisingly efficient: for
a lattice of K samples, computation takes time O(K), as shown by Felzenszwalb and Huttenlocher (2004).
The EDT yields an unsigned distance field, which fails to distinguish between the inside and outside of
obstacles. To augment the distance field with sign information, we use robust inside-outside testing in each
voxel to negate the values which lie inside of the terrain triangle meshes. Converting the mesh to binary
voxels results in some degree of aliasing in the distance field, especially near the boundary of the terrain.
To mitigate this, for all voxels within one or two grid cells of the terrain, we compute the exact distance
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Figure 3: Signed distance field representation of a 2D polygonal obstacle. Space is discretized into cells. Cells
storing a negative distance are inside the obstacle; cells with a positive distance are outside. Representing
the 3D terrain works in exactly the same manner.

to the nearest triangle (this distance can be computed and stored during the original voxel scan-conversion
step). Computing the signed distance field for a 2 m× 0.6 m environment takes between 2 and 15 seconds,
depending on the complexity of the triangle meshes involved.

To perform a distance query between the robot and the signed distance field, we use a simplified repre-
sentation of the geometry of the robot. We note that the minimum distance between a sphere and any point
on the terrain can be computed by taking the value of the signed distance field at the center of the sphere,
and subtracting off its radius. Similarly, distance query for a capsule, or line-segment-swept sphere, can
be accomplished by sampling along the line segment, taking the minimum, and subtracting off the capsule
radius. Our simplified representation of the robot, therefore, consists of a collection of spheres and capsules.
Where query points fall between exact cell boundaries, we use mult-linear interpolation to smooth the out-
put of the distance field. Overall, this gives us a collision checking framework which is constant time with
respect to the obstacle geometry, and which is linear time in both the number of spheres and the length of
line segments in the robot collision model.

Although there is some degree of error between our model and the true robot geometry, the radii of
the collision model can be selected such that the model is truly conservative, and only reports collision-free
when the robot is collision free. In practice, light or glancing collisions between the robot and the terrain are
acceptable (especially of course at the feet) as long as the robot does not attempt to drive through obstacles.

For any point x, the signed distance field not only provides d(x), the distance to the nearest obstacle
boundary, but ∇d(x) the corresponding gradient, which tells which direction to move x in to most quickly
increase the distance from obstacles. As shown in the next section, this gradient information is quite useful
for resolving collisions during planning. Additionally, computing the gradient of the signed distance field
using finite difference is both straightforward and fast.

3.4 Obstacle avoidance

Imagine that the current candidate robot configuration is found to be in collision with the environment at a
point p, and that the best direction to move the colliding point in order to resolve the collision is given by
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Figure 4: Left: during planning, a collision is detected at point p along the shin. How should the pose of
the trunk (x,R) change to move point p along the gradient g of the terrain? Right: the obstacle avoidance
routine translates and rotates the trunk to correct the shin collision.

the vector g (as shown in figure 4). How should the robot configuration be modified in order to cause the
correct motion of the reference point, while still ensuring that the foot positions remain constrained?

The answer to the question depends upon which link of the robot lies in collision. For collisions with the
trunk, a “virtual force” approach similar to the one outlined in the previous section is sufficient to resolve
collisions. However, for collisions with hips, knees, or shins, the solution is not quite as straightforward. To
accomplish this, we will solve for the two Jacobian matrices

Jp(x) =
[
dp
dx

]
, and Jp(R) =

[
dp
ω

]
.

which indicate how point p on the robot moves as x and R are changed, given that the foot position will be
maintained via IK.

We begin by describing how p is computed as a function of x, R, and fW . Let pB(q) specify the body-
frame position of the reference point given the joint angles q. Recall that q = IKB(fB) will be the IK
solution of joint angles given a body-frame foot position fB . Also recall that the body-frame foot position
can be computed from world-frame by fB = RT (fW − x). Then expressed in world coordinates, we have

p = RpB

(
IKB

(
RT (fW − x)

))
+ x

First let us examine the translational Jacobian. From the chain rule,[
dp
dx

]
= I + R

[
dpB

dq

] [
dq
dfB

] [
dfB

dx

]
Now we derive the three Jacobian matrices on the right hand side of the above equation. The first one
is JpB

(q), the Jacobian of the reference point with respect to joint angles. This is the “usual” kinematic
Jacobian defined for the reference point. Note that if the reference point is anchored to the hip link, this
matrix will be rank-deficient because changing the knee angle has no effect on the body-frame position of
the reference point. The second matrix is the rate of change in joint angles with respect to desired foot body
position. This is JfB

(q)−1, the inverse of the familiar foot Jacobian (if such an inverse exists). Finally, by
inspection, the last matrix in the equation is simply −RT , yielding the overall equation

Jp(x) = I−RJpB
(q) JfB

(q)−1 RT
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The Jacobian for the rotational component is derived as:[
dp
ω

]
= R

[
dpB

ω

]
− [RpB ]×

= R
[
dpB

dq

] [
dq
dfB

] [
dfB

ω

]
− [RpB ]×

= RJpB
(q) JfB

(q)−1

[
dfB

ω

]
− [RpB ]×

Once again, the chain rule yields the same two kinematic Jacobian matrices produced for the translational
derivatives above. The last chain rule term resolves to[

dfB

ω

]
= RT [fW − x]×

The skew-symmetric matrix [a]× obeys the identity

[Ra]× = R[a]×RT

for any rotation matrix R and vector a. Therefore, the expression above can be further simplified to read

Jp(R) = R
(
JpB

(q) JfB
(q)−1 [fB ]× − [pB ]×

)
RT

Finally, to move the reference point p in the direction of g, we set

∆x = αJp(x)T g, and ω = β Jp(R)T g

Once again, α and β are step sizes that specify the relative magnitude of translational and rotational terms.

4 Footstep Planning

Discrete search, characterized by algorithms such as A*, is a powerful way to solve problems in motion
planning; however, as the underlying dimension of the problem increases, runtime increases exponentially.
Unfortunately, legged robots typically have many degrees of freedom (DOF). Footstep planning, as formalized
by Chestnutt et al. (2005), mitigates the curse of dimensionality by combining a low-dimensional discrete
search over the space of possible footstep locations with a policy or controller that coordinates full-body
motion in order to follow a particular footstep path. Because the space of possible footstep locations is much
smaller than the space of all full-body motions, the search problem becomes far more tractable.

One major difficulty with this hierarchical approach is the loose coupling between the footstep planner and
the underlying policy that executes footsteps. If the planner is too conservative in estimating traversability,
the system will underperform; too aggressive, and execution will fail. Our planning software features a novel
“certificate” concept which is aimed at ensuring agreement between the planner’s traversability estimates
and the capabilities of the underlying footstep controller. Other highlights of our footstep planning approach
are a terrain cost map learned from expert preferences, and an efficient anytime planning scheme that allows
real-time re-planning.

4.1 Footstep cost and heuristic

Recall that the goal of discrete search algorithms such as A* is to find the minimum-cost path from a
particular start state to a goal state. For the purposes of a footstep planner, a state is the 2D (x, y) location
for each foot; a goal state is one that places the centroid of all the foot locations within a predetermined
radius of a specified goal point on the terrain. Both states and actions are discretized, with a finite number of
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Figure 5: Left: Tool for terrain cost learning. An expert expresses preferences over pairs of terrain samples,
and the system learns a cost function based on the underlying ranking problem. Right: Learned terrain cost
function applied to rocky terrain. Blue areas are low cost, red areas are high cost. The system is able to
distinguish between flat ground (low cost), shallow indendations (medium cost), dome shapes, slopes, and
deep crevices (high cost).

possible actions defined relative to the current state.1 In our framework, the cost of an action is determined
by the sum of two factors: terrain cost, which indicates the relative traversability of the terrain under the
footstep target, and pose cost, which estimates the quality of the various full-body poses that can be achieved
in the low-dimensional state.

To reduce planning times, A* and its variants use a heuristic cost-to-go function h(s) that estimates the
remaining cost to get to the goal from a particular state s. If h(s) is strictly less than the true cost-to-go, then
the heuristic is said to be admissible, and A* returns a path guaranteed to be optimal. The running time
of A* strongly depends upon the fidelity of the heuristic—a heuristic that approximates the true cost-to-go
well should perform far better than an uninformed heuristic.

If optimality is not paramount, it may be desirable to use an inadmissible heuristic known to more closely
approximate the true cost-to-go than an alternative, admissible heuristic. This approach can greatly reduce
planning times at the expense of incurring some degree of suboptimality, bounded by the disagreement
between h(s) and the true cost-to-go (Pearl, 1984).

A typical approach to building a heuristic function for a footstep planner starts by collapsing the robot
state down to a 2D point such as the centroid of all foot locations, and computing the Euclidean distance
from that point to the goal. Unfortunately, due to kinematic restrictions, LittleDog is not particularly adept
at moving sideways or turning in place without taking many steps. Therefore, a heuristic based on Euclidean
distance severely underestimates the cost-to-go in certain configurations (such as when the goal lies directly
off to the side of the robot).

Instead of collapsing the state to a 2D point, we convert it to a position and orientation (x, y, θ) triple.
We then model the robot as a Dubins-style (forward-only) car with a fixed turning radius (Dubins., 1957).
To reach the goal along a minimum-distance path, the car must first turn along an arc-shaped segment to
orient towards the goal, followed by a straight-line segment to the goal. Using the Dubins heuristic prevents
the planner from uselessly allocating search nodes that require large amounts of turning or side-stepping
despite their relative proximity to the goal. In a typical trial on rough terrain, using the Dubins heuristic as
opposed to a näıve Euclidean heuristic can result in over a twofold speedup in planning time.
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4.2 Terrain cost

Terrain cost encodes the relative desirability of a particular foothold, weighing the relative merits of features
such as slope, convexity/concavity, and bumpiness. It is easy to come up with broad statements relating
terrain shape to cost: steep slopes are bad, dome-shaped features are bad because feet may slip off, small
indentations are good because they physically register feet, large indentations are bad because shins can get
stuck in them, etc. However, as with many planning and optimization problems, coming up with a precise
weighting of these features can be quite difficult in practice—if bumps are worse than slopes, then by how
much? And how do both compare to chasms?

Instead of burdening the system designer with the task of exactly specifying a cost function, the field of
Inverse Optimal Control (IOC) seeks to learn a cost function to imitate the preferences or behavior of an
expert. The first phase of the LittleDog project coincided with our development of the first general inverse
optimal control technique which we call Maximum Margin Planning (MMP) (Ratliff et al., 2006). The first
real-world implementation of MMP was done on the LittleDog platform. The Learning for Locomotion
project inspired continued research within this area, including the development of the nonlinear variants
on MMP such as MMPBoost (Ratliff et al., 2007c), leading to a generalized family of nonlinear MMP
algorthms known as LEArning to seaRCH (LEARCH) (Ratliff et al., 2009a), as well as a novel form of
structured prediction known as Maximum Margin Structured Regression (MMSR) (Ratliff et al., 2007a). In
section 8, we describe a variety of extensions to the basic MMP algorithm in order to extend the approach
of learning footstep costs for LittleDog.

MMP and LEARCH present rigorous solutions to general IOC problems with strong regret and gener-
alization bounds; however, they rely upon a full sequence of optimal controls to maintain convexity. An
expert must demonstrate not only the optimal footstep to take from a given robot state, but in fact the full
sequence of optimal footsteps from the inital state to the goal. To further alleviate this burdern, inspired by
the spirit of MMP, we explored an alternate cost preference learning methodology that can be understood
as a degenerate IOC formulation where the user only specifies relative preferences on single footsteps. This
simple IOC formulation was adopted for use in the final Learning Locomotion trials.

In our system, the terrain cost function emerges implicitly from a set of preferences given by a knowl-
edgeable expert (Zucker, 2009). The system presents the expert with a succession of pairs of terrain samples.
For each pair, the expert indicates whether he prefers one sample over the other. Then, the system learns a
cost function that matches the preferences expressed by the expert (see figure 5).

Our goal is to produce a utility function u(f) over terrain features f such that if the expert prefers f+

over f−, then the function makes the preferred feature appear better by a margin m > 0:

u(f+) > u(f−) +m

This is exactly the support vector ranking problem (Herbrich et al., 1999). Of course, the constraint written
in the above equation can not always be met in the presence of noisy or inconsistent data; hence, analogous
to support vector machines in the case of classification, we introduce slack variables that transform the hard
constraint into a soft one. We solve the underlying ranking problem with an online subgradient method
similar to the one described by Kivinen et al. (2004).

We use as terrain features the coefficients obtained by a local quadratic regression of the proposed
foothold: that is, the coefficients obtained by the least-squares fit of the surface

z(x, y) = (x, y)
[
kxx kxy

kxy kyy

]
(x, y)T + (x, y)

[
kx

ky

]
+ kz

for multiple window sizes at increasing radii from 1 cm to 6 cm. We also include derived quantities such as
the eigenvalues of the second-order coefficient matrix, and the magnitude of the first-order coefficient vector.

1We use a local search scheme similar to the one described by Chestnutt (2007) to improve output and avoid artifacts from
discretizing actions.
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The utility function is defined to be a simple linear combination of all features encoded by a weight vector
w, with u(f) = wT f . It gets transformed into a cost function c(f) through exponentiation:

c(f) = e−u(f)

This ensures that cost is everywhere positive, and it also changes the additive margin m into a multiplicative
margin. We believe a multiplicative margin is more natural for this setting since we often setting since we
often interpret costs in terms of competitive ratios: how much would we go out of our way (an inflation
factor further distance) to avoid this spot. We note that since flat ground produces the zero feature vector,
footsteps on flat ground have unit cost.

Our system supports learning separate cost functions for front and hind feet, and it also is capable of
extracting features in an oriented fashion, considering the overall heading of the robot as it is computed for
the Dubins heuristic.

The process of learning terrain cost is amenable to multiple iterations. After learning a cost function and
testing with the robot, the expert can define additional preferences over problem spots. Learning can then
be re-run with the original set of preferences, augmented by the new data. Our final cost function was based
on just over 200 preferences, the vast majority of which were collected in the initial preference-gathering
session over the course of about 2-3 hours.

4.3 Pose cost and certificates

Terrain cost considers the shape of the terrain as it relates to a single foot. Pose cost, however, considers the
overall effects of a full set of footstep locations. To ensure a stable support polygon, the planner examines
the triangle formed by the three supporting feet for any given footstep. If the triangle has an incircle of less
than a preferred radius, the pose cost is increased. This ensures that the robot has a sufficiently large base
of support whenever possible.

Computing the remainder of the pose cost consists of searching for a “pose certificate”: a full specification
of all 18 DOF of the LittleDog robot that leaves the feet at the positions given by the target state, leaves
the body’s center of mass (CoM) above the support polygon, and that is free of collisions with the terrain
(except of course at the feet). This is an attempt to ensure good agreement between the footstep planner
and footstep execution by preventing the footstep planner from permitting footsteps that are known to be
impossible to execute in practice. The pose cost is increased if the certificate puts the robot near kinematic
singularities or collisions. If no valid pose certificate can be found, then pose cost becomes infinite, and the
action under consideration is disallowed.

It is not uncommon to use a hierarchical planning approach (such as footstep planning) to approximate
the solution to a high-dimensional planning problem by running a high-level, abstract planner in a lower
dimension. To the best of our knowledge, the pose certificate system is a novel method to “lift up” the
intermediate results of an abstract planner into the full problem space while the abstract plan is being
constructed. Validating the work of the abstract planner before it makes a hard commitment to a particular
plan makes the concrete realization of the output in terms of full-body trajectories far more likely to be
feasible.

4.4 Pose certificate search

Searching for a pose certificate is a local, gradient-based method that accumulates a number of translational
and angular gradient steps to the robot’s trunk pose over successive iterations. The process begins by placing
the robot’s trunk in a heuristically determined position and orientation, given the current foot locations.

Denote the position of the robot’s trunk (determined as the center point of all the hip joints) to be vector
x, and it’s orientation to be the rotation matrix R. At the beginning of each iteration, we initialize the
translational and rotational gradient terms ∆x, ω to be zero. Next, inverse kinematics (IK) are used to find
the joint angles for each leg to place the feet in the correct location. If no valid IK solution can be found for
some leg, we add to the current gradient term the reachability gradient described in section 3.2.
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Figure 6: Visualization of ARA* search for footstep planning. Each state visited during planning consists
of a set of four footstep locations. The set of all states visited form a search tree. In the picture above, the
8-dimensional search tree is projected down to 2D so that the parent/child relationships between individual
footsteps are made visible. The tree shown here has over 700 states; not shown are the many states discarded
during search because of collisions, kinematic infeasability, or insufficiently large support triangles.

Terrain States Initial Ratio
Large rocks (Figs 1,5) 23,973 4.40s 1.67
Round rocks (Fig 5) 33,063 1.24s 2.48
Sloped rocks (Figs 1,6) 46,768 1.23s 1.35
Logs (Fig 1) 41,028 1.09s 1.42
Gap 28,232 1.88s 1.58

Table 1: Representative runs showing effect of varying terrain on footstep planner performance. At the start
of each trial, the anytime planner is run for 45 seconds. Terrain indicates the terrain type States indicates
the total number of candidate states explored by ARA*, Initial is the time it takes ARA* to return the first
feasible plan from start to goal, and Ratio is the amount of improvement in total cost between the initial
and final plans.

Next, the 2D distance between the robot’s CoM and the support triangle is evaluated. If the distance is
below a margin, a horizontal increment is added to ∆x which nudges the body back into the triangle.

Finally, the minimum distance between the robot and the terrain is computed. If it is less than a
threshold, ∆x and ω are modified in order to move the point at which the minimum distance is attained in
the direction of the terrain gradient, as described in section 3.4.

Finally, ∆x and ω are applied to obtain a new position and orientation x and R. The process is iterated
until no displacements are necessary, or for a preset number of iterations (25 in our system).

4.5 Planning in real-time

One of the most important goals for our software is the ability to plan in real-time. Although the Learning
Locomotion evaluation trials allow up to 90 seconds of planning time before the start of a trial, execution
errors during a trial (when the clock is running) require fast reaction. We set a target of resuming walking
within 2 seconds of detecting and recovering from an execution error.

Both the state space and branching factor for our footstep planner are quite large: in a typical scenario,
each foot can be placed anywhere on a 125 × 375 grid, yielding a state space with over 1018 states, and
branching factors are between 12 and 25 actions. With an admissible heuristic in such an environment, 90
seconds is nowhere near enough time to compute an optimal plan, let alone the 2 seconds we allocate for
re-planning after errors.
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Figure 7: Trajectory optimization for a robot can be considered as minimizing a potential over a set of
workspace paths which are jointly constrained by the robot kinematics. Left: CHOMP seeks to minimize
the obstacle potential c(x), where x(u, t) is a workspace position indexed by time t and robot body position u.
Right: the gradient update rule for CHOMP takes an obstacle potential acting along the obstacle normal,
and projects it perpendicular to the tangent of the path through the workspace, thus ensuring that gradient
updates do not merely rearrange the timing of points along the path.

Therefore, we chose to implement our planner as an anytime planner using the ARA* algorithm, which
works by iteratively reducing the inflation of the A* heuristic in order to produce plans which are successively
closer to optimal (Likhachev et al., 2004). ARA* efficiently re-uses vast amounts of computation between
successive searches, examining a minimal set of states each time the heuristic inflation is lowered. Using
ARA* allows us to make good use of the full initial planning period to produce high-quality plans, while
still producing usable plans quickly after an execution error. See table 1 for a summary of ARA* planning
performance.

Of course, there are many other dynamic replanning schemes for heuristic search: D*, for example, is a
variant of A* that is specialized for dynamic replanning (Stentz, 1995). However, D* and related algorithms
such as D*-Lite and AD* (Koenig and Likhachev, 2002; Likhachev et al., 2005) are not applicable to our
problem because they search backwards from a single goal state to the start state, and our footstep planner
has a very large set of possible goal states.

Precomputation is also key to our fast planning performance. At the start of a set of trials over a
particular terrain, our software computes the signed distance field representation of the terrain, as well as
the feature vectors for evaluating terrain cost. Even though the pose certificate computation may invoke as
many as 25 full 3D collision checks against the terrain, we can still evaluate tens of thousands of candidate
actions, typically 500-1,100 per second on commodity hardware.

5 Footstep Trajectory Optimization

Once the footstep planner produces a sequence of footsteps and pose certificates, it is passed along to
a module which generates a trajectory for each footstep. These trajectories are optimized before being
executed on the robot in order to ensure they are smooth, dynamically stable, and collision-free. In the
remainder of this section we describe CHOMP, a gradient-based optimization algorithm, review how initial
footstep trajectories are generated, and detail how CHOMP is used to optimize footstep trajectories.

5.1 The CHOMP algorithm

For footstep trajectory optimization, we use the Covariant Hamiltonian Optimization and Motion Planning
(CHOMP) algorithm (Ratliff et al., 2009b). CHOMP is a gradient-based optimizer for creating smooth,
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collision-free robot trajectories. Although CHOMP extents naturally to become a probabilistically complete
planner using the Hamiltonian Monte Carlo algorithm, we use only the deterministic optimization aspects
of CHOMP, which we briefly summarize here.

CHOMP represents a trajectory ξ as a sequence of n robot configurations qt ∈ Rm sampled at regular
time intervals t ∈ {1, . . . , n}, with endpoints q0 and qn+1 fixed. The objective function f(ξ) that CHOMP
minimizes is the sum of two terms: a smoothness objective fsmooth(ξ), and a workspace potential objective
fobs(ξ). The efficiency and utility of CHOMP stem from two key geometric insights. First, a trajectory for
a robot can be viewed as a collection of paths through the workspace, jointly constrained by the robot’s
kinematics (see figure 7). Second, using a covariant, or natural gradient ensures that convergence is fast
independent of the number of samples used to represent the trajectory.

Now we define the two terms of the CHOMP objective function. The smoothness term is simply expressed
as a sum of squared time-derivatives (e.g. velocity or acceleration) over the trajectory. Since the trajectory
is represented as a sequence of samples, such differentiation can be accomplished via a straightforward finite
differencing operation. If the vector ξ is a simple concatenation of the robot configurations qt, then for any
derivative, the differencing operation can always be written as K ξ + e where K is a suitable differencing
matrix with band-diagonal structure, and e is a vector that accounts for the endpoints of the trajectory. The
sum of squared derivatives can therefore be expressed as

fsmooth(ξ) = ξTAξ + ξT b+ c

with positive definite mn×mn matrix A = KTK, the vector b = 2KT e, and scalar c = eT e.
As shown in figure 7, we can consider the overall trajectory to be a collection of paths through the

workspace jointly constrained by the robot kinematics. Let u index points on the robot’s body. Then
denote by x(u, t) the function that gives the position of point u on the robot’s body at time t. Now, given
a workspace potential function c(x) imposed by obstacles or other workspace constraints, we define the
workspace potential to be the discrete analog of the functional

fobs(ξ) =
∫

u

∫
t

c
(
x(u, t)

) ∥∥∥∥ ddt x(u, t)
∥∥∥∥ dt du

The arc-length parameterization of fobs has an important effect: the functional gradient of this objective
projects the workspace potentials orthogonal to the tangent of the path x(u, t) (also illustrated in figure 7).
This ensures that the effect of the gradient is to always adjust the overall path, instead of merely redistributing
points along it.

To run gradient descent with CHOMP, we use the update rule

ξ ← ξ − αA−1∇f(ξ)

where α is a step size, ∇f(ξ) is the normal (Euclidean) gradient of the objective function with respect to ξ,
and A is the same positive-definite matrix defined above. This is the so-called “natural” gradient because
it is invariant to re-parameterization (for instance, changing the number of samples used to represent the
trajectory). The practical effect of multiplying the gradient by A−1 is to speed convergence by spread the
impact of obstacles smoothly along the entire trajectory.

CHOMP confers a number of benefits over other path and trajectory optimization schemes such as
elastic strips or shortcut-based methods (Brock and Khatib, 2002; Geraerts and Overmars, 2006). First
and foremost, the natural gradient technique gives very fast convergence. CHOMP also considers dynamic
quantities such as velocity or acceleration instead of simply minimizing path length. Furthermore, by using
signed distance fields (described in section 3.3) to define the workspace potential function, we get smooth
gradients even for robot configurations that are in collision with obstacles. Aside from LittleDog, CHOMP
has also been used to guide robotic manipulators through cluttered workspaces (Ratliff et al., 2009b; Willow
Garage, 2009).
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Figure 8: Optimizing a footstep over a barrier with CHOMP. Left: Initial trajectory has severe knee collisions.
Center: After optimization, collisions have been resolved by lifting the leg higher and tilting the body. Right:
Execution on robot.

5.2 Initial trajectory

CHOMP requires as its input an initial robot trajectory. The input trajectory need not be strictly collision-
free, but we make some effort to ensure that it does not lie too close to a bad local minimum. To make sure
that the motion of the robot is dynamically stable, we initialize the trajectory for the body to follow a path
generated by a ZMP preview controller (Kajita et al., 2003). The zero moment point (ZMP), equivalent to
the center of pressure, is the dynamic analogue to the center of mass (CoM) of a stationary object. If the
ZMP remains above the support polygon at all times, the robot will support itself stably. Based on a 2D
table-cart model, the ZMP preview controller takes as input a desired reference trajectory for the robot zero
moment point, and outputs a trajectory for the CoM that matches the ZMP reference trajectory closely and
minimizes extraneous motion.

The first step in building footstep trajectories is to construct a linear spline path for the ZMP to follow.
The default choice for the ZMP in each footstep is the body position given by the corresponding pose certifi-
cate, because it is known to be stable, reachable, and collision-free.2 The linear spline path is transformed
into a time-referenced trajectory by considering the estimated duration for each footstep.

LittleDog’s maximum walking speed is largely dictated by the maximum 7.5 rad/s hip joint velocity
and 14 rad/s knee joint velocity. Therefore, footstep timing can be well approximated by computing the
maximum over all joints of minimum time to move the joint from initial to final position.

Once the footstep durations for the next three footsteps are estimated, the ZMP preview controller
generates the body trajectory for the next footstep to be execute. Multiple steps of lookahead are required
due to the preview controller’s moving preview window. The CoM trajectory output by the 2D ZMP
preview controller does not specify body height or orientation, so we independently use splines connecting
the certificate poses to fill in this information.3

For the swing leg, a spline is constructed to move smoothly from initial foot position, up to a heuristically
determined “liftoff” position, over to a “dropoff” position, and down to the footstep target, as shown at the
left of figure 8. Once the body and swing leg trajectories have been generated, the supporting leg trajectories
are determined by IK, and the full initial trajectory is ready to be sent to the optimization module. Note
that although the trajectory satisfies the 2D dynamic stability criteria, it may be infeasible in other respects:
there could be kinematic reachability issues, or collisions against the terrain. Trajectory optimization is an
opportunity to correct these issues before the footstep is executed.
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5.3 Footstep trajectory optimization with CHOMP

Other systems for generating footstep trajectories primarily reason about collisions for the swing foot
alone (Kolter and Ng, 2009). For most footsteps, this is sufficient; however, it can sometimes lead to situa-
tions where the shin or knee of a supporting leg impacts the terrain as the body moves forward. Considering
full-body collisions with CHOMP goes a long way to mitigate these situations.

Trajectory optimization works on a one-footstep window. A footstep consists of an optional “shift”
phase, where the robot’s center of pressure is moved into the current footstep’s polygon of support, and
during which all four feet are on the ground, followed by a “step” phase during which one foot is lifted up,
moved over its destination, and set back down. Because of this difference, there may acutally be a different
number of samples in a given footstep for the body and for the current swing leg, because swing leg angles are
constrained by IK during the shift phase. To optimize a footstep trajectory, we run CHOMP as coordinate
descent over body and swing leg configurations. First, the body trajectory is optimized with CHOMP, given
the current swing leg joint angles. Second, the swing leg joint angles are optimized with CHOMP given the
current body poses.

Beyond the smoothness and collision-free objective criteria required for CHOMP, our software also at-
tempts to optimize kinematic reachability and static stability. The reachability and stability gradients are
handled analogously to collision; after they are computed as described in sections 3 and 4.4, then projected
orthogonal to the current trajectory as in the original CHOMP work.

One unresolved issue in CHOMP as presented to date is the problem of allocating samples. It is difficult
to determine a priori how many samples it takes to represent a trajectory, because the number of samples
increases with the complexity of the trajectory. We chose a somewhat heuristic solution to the problem.
For our LittleDog software, trajectories are always sampled at a fixed rate (half the frequency of the main
control loop). The CHOMP algorithm proceeds until the trajectory is valid, or for a predetermined number of
iterations. If, after CHOMP finishes, the trajectory is in collision with the terrain, or if the leg joint velocity
limits are violated, the estimated duration of the footstep is increased, the initial trajectory is re-generated
and CHOMP is restarted (up to a maximum number of restarts).

As mentioned in section 5.1, we omit the Hamiltonian Monte Carlo aspect of CHOMP in our LittleDog
software because we found it to be largely unnecessary for this class of problems. Additionally, since there
is no guarantee that a feasible trajectory exists for a given foot placement action computed by the footstep
planner, the additional work performed by a stochastic search could be wasted. In the event that the final
trajectory after optimization is not feasible, one possible action to take would be to throw an exception back
to the footstep planner; however, in our system we chose instead to optimistically execute these known-
infeasible trajectories. In the best case, they will succeed; otherwise, hopefully the execution layer can
recover and re-plan after execution errors.

6 Execution and Low-Level Control

The footstep execution module maintains a trajectory buffer that operates in first-in, first-out (FIFO) fash-
ion. The trajectory specifies not only the desired joint angles and velocities over time, but also additional
information such as desired body position and orientation, corresponding velocities and accelerations, which
feet should be supporting, and estimated ground interaction forces. After the first footstep, trajectory
optimization occurs in parallel with execution. As the current step is being executed, the next step gets
optimized and appended to the FIFO buffer.

The execution module corrects for errors at a variety of levels. The servos onboard the LittleDog robot
support per-joint proportional-derivative (PD) control, as well as force control, which we use to minimize
shear forces and to help soften foot impacts on touchdown.

2In order to achieve faster walking speeds and minimize the displacement of the trunk, we also test a “shortcut” ZMP
position that reduces the overall length of the spline. If the shortcut position results in terrain collisions or other errors, the
system falls back to the certificate pose using the restart procedure described later in this section.

3Accelerations due to vertical motion and rotation are assumed to be negligible in terms of the ZMP stability criterion.
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Figure 9: Specialized behavior for barrier crossing. First, the robot crouches in front of the barrier. Rearing
up, it lunges forward to place its front shins on the edge of the barrier, and uses its front legs to push itself
over. To gain enough clearance to move its hind legs over the barrier, the robot creates a stable tripod with
its two front legs and the front of its trunk. Finally, it recovers by placing its hind feet on the ground.

Although commands to the robot are specified in terms of joint angles and velocities, it is important to
track the desired trunk position and orientation in order to maintain dynamic stability and to ensure that
the robot hits the planned footstep targets. Foot slip and gear backlash both contribute to errors in body
pose. To combat this, we run a slow-moving integrator on each supporting leg.

The integrator works as follows: Denote the desired position vector and rotation matrix of the body by
x and R, respectively, and denote the desired foot position for a supporting leg in body-frame Cartesian
coordinates by fB . Denote the foot’s desired position in the world frame by fW = RfB +x. Say the body is
observed to be at position x̄ with rotation R̄. We transform the desired world foot position into the observed
body frame f̄B = R̄T (f − x̄). The update rule for the leg integrator ∆ to compute the commanded joint
angles q is then given by

∆ ← ∆ + γ (fB − f̄B)
q ← IKB(fB + ∆)

where γ is an integrator gain, and IK is the function that solves for joint angles corresponding to given
body-frame coordinates. This control law acts to counter the body error for each leg, shortening the leg if
the body is too high, and lengthening it if the body is too low.

Assuming no further slippage occurs, this control will move the body towards its correct orientation and
position. In order to have the feet step into their intended locations, the integrator for each foot is decayed
to zero while the foot is in fight. Since the foot is no longer on the ground in this case, the foot is no
longer needed to correct the body position and orientation. Assuming the stance feet succeed in correcting
the body’s position and orientation, the flight foot, with zeroed integration term, will step into its intended
location on the terrain (Stolle, 2008).

Execution errors larger than a certain threshold trigger a reflex module which attempts to restore the
robot’s balance and place all four feet firmly on the ground. The reflex module can be triggered by body
position or orientation errors, foot position errors, or foot force errors. After recovery stabilizes the dog, the
footstep planner is re-started, and walking resumes soon after.
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Figure 10: Specialized behavior for climbing tall steps. The robot begins by rearing up and lunging to place
its front legs far forward on the next step. It then uses its front elbows to drag its body and hind feet forward
all the way onto the step. Finally, it tips up into a tripod using the front of its trunk and front legs to gain
enough clearance to bring its hind legs onto the step.

7 Specialized Behaviors

Although the vast majority of the terrain encountered in the Learning Locomotion program can be traversed
by our walking gait, in some scenarios we elected to switch to a set of specialized behaviors designed specifcally
to exploit geometric features of certain terrains.

We developed two specialized behaviors in particular to help us through the final phase of the Learning
Locomotion project. These behaviors were used for climbing large steps and traversing tall barriers with
heights of over 12 cm (note that the LittleDog leg is 15 cm when fully extended). They are illustrated in
figures 9 and 10. The behaviors consist of a sequence of joint angles which are replayed by the robot once
it has walked to an appropriate location on the terrain. In the past, we have used joystick input to create
specialized behaviors, but the ones used for the barrier and step terrains were specified as a scripted program.

In the most recent phase of the Learning Locomotion project, specialized behaviors were not integrated
into a larger planning structure, and were run only when the system had a priori knowledge of the class
of terrain (barrier or steps). Despite the lack of a general planning algorithm, these behaviors are actually
capable of handling a broad range of obstacle geometry.

7.1 Planning with specialized behaviors

In past learning locomotion phases, we investigated integrating these specialized behaviors into a more
general planning scheme. In order to make use of these pre-recorded behaviors on new terrain, we employ
a two part algorithm. In the first part, for each step, we find possibly multiple patches of terrain that are
similiar to the terrain where the step was recorded. The recorded information is then transfered to the
new position and orientation as well as adapted to some changes in the terrain. We also verify using swept
volumes of the body that the dog will not collide with the terrain in the new location.

The second part of the algorithm is a hierarchical search, which incorporates the footstep planner and
produces plans that are a combination of synthetic steps from the footstep planner as well as precorded
steps. For the high level search, we generate a topological graph (see figure 11). The nodes of the graph
are the start state and the goal state of the robot, as well as every step in the transferred library. Edges
represent walking from the end of the pre-recorded step represented by the start node to the beginning of the
pre-recorded step represented by the target node. The cost of every edge is roughly the number of additional
steps that have to be taken to traverse the edge. If the foot locations at the end of the source pre-recorded
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Figure 11: Illustration of topological graph after transfer of library. Each behavior is a node in the topological
graph. The connections (gray lines) are made using the foot step planner.

step are close to the foot locations at the beginning of the target pre-recorded step of the edge, no additional
steps are necessary. In order to know the number of additional steps, the footstep planner is used at this
stage to connect the gaps between steps when we generate the topological graph. Since the steps that are
output by the planner are considered risky, we assign a higher cost to planned steps. (If the planner created
reliable steps, we could just use the planner to plan straight from the start to the goal.) In order to reduce
the complexity of the graph, nodes are only connected to the n-nearest steps based on the sum of Euclidean
foot location difference metric. We then use a best-first search through this graph to find a sequence of
footstep-planner-generated and pre-recorded steps. This sequence is added to the final library. More details
on planning with specialized behaviors can be found in (Stolle, 2008).

8 Additional Imitation Learning

The LittleDog platform has provided an ideal test bed for imitation learning, and has led to the development
of numerous novel imitation learning techniques. To motivate the importance of imitation learning for
quadrupedal locomotion, we note that to date there still exists a very difficult terrain developed for the
project, known as terrain D, that cannot be reliably traversed autonomously by any team. The only robust
policy that we were able to develop was one built atop a trajectory created by a human teleoperator. While
traversal using existing automated technology has proven impossible, the resulting demonstrated policy was
shown to be both repeatable and robust to significant modeling perturbations. This discrepancy illustrates
the importance of learning by demonstration within the context of quadrupedal locomotion across rugged
terrain. We have already described how IOC algorithms such as MMP and LEARCH can learn how to
reproduce expert behavior. In this section, we detail two primary applications inspired the development of
these techniques: heuristic learning for footstep planning, and footstep prediction.

8.1 Training a fast heuristic planner to mimic a slow exact planner

As discussed above, at a course resolution, we can view our system as decomposing into two primary sub-
components: a footstep planner, and an execution module. During the footstep planning stage, an optimal
sequence of footsteps is constructed that guides the robot from a start configuration to a goal configuration,
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and during the execution stage, full-body trajectories are generated to take the robot from one footstep to
the next along that sequence. Our learning techniques for this project focused primarily on the footstep gen-
eration phase. In this section, we assume that the costs processed by the high-dimensional footstep planner
are correct, i.e. we assume that the execution stage will be able to find successful and efficient trajectories
for the footsteps that result. The primary issue, then, becomes speeding up the slow high-dimensional foot-
step planner to achieve effective real-time performance for efficient replanning. We address the higher-level
question of learning superior costs to mimic human demonstration in the next section.

Footstep planning is a complicated and high-dimensional problem. As a result, footstep planners built
atop the A* algorithm, while tractable, tend to be slow. Importantly, however, the performance of A* is
highly dependent on the sophistication, accuracy, and efficiency of the heuristic. Heuristics that more accu-
rately predict the planner’s cost-to-go from any given state can prune away large portions of the search space
and, accordingly, facilitate fast convergence. While the sequence of footsteps is generally high-dimensional,
we observed that the problem naturally decomposes into two well-defined subtasks. The most straightfor-
ward of these subtasks is the foot-placement, itself. At any given location, the footstep planner must reason
about where the foot should go within the local reigon. However, at a higher level, the footstep planner must
additionally reason about the most efficient two-dimensional navigational trajectory the robot should follow
through the terrain. This second task significantly increases the computational difficulty of the problem.
Our approach, therefore, was to extract this two-dimensional navigational behavior into a fast 2D planning
algorithm which could then be used as an intelligent and highly accurate heuristic to efficiently guide the
footstep planner from the start to the goal.

To generate training examples, we ran the footstep planner across the terrain between randomly selected
pairs of start and goal points, and extracted the two-dimensional navigational trajectory by estimating
the trajectory of the robot’s center of mass. We then trained a fast 2D navigational planner to mimic this
behavior using a novel nonlinear variant of MMP we call MMPBoost (Ratliff et al., 2007c). In order to obtain
an informative heuristic under the trained planner, then scaled the resulting cost map using linear regression
so that the cost-to-go values of the trained 2D planner best matched those of the higher-dimensional footstep
planner. Details of this approach can be found in (Ratliff et al., 2007c). When used as a heuristic for a
bipedal planner, we attained an average speedup of 120x in the footstep planner. The best speedup seen
under the quadrupedal footstep planner, though, was only about 4x. We hypothesize that this difference
in speedup can be attributed primarily to the quality of approximation provided by the 2D navigational
planner. For bipedal locomotion, where the robot is much more accurately represented as a two-dimensional
orientationless point, the approximation proved accurate. On the other hand, under quadrupedal locomotion,
the built in action model biased the planner toward footstep sequences that avoided turning in place, roughly
introducing a third, rotational, dimension to the navigational component. We hypothesize that improved
speedups may be attained for quadrupedal locomotion by using a three-dimensional navigational planner
that explicitly accounts for the robot’s orientation. The implementation of this heuristic learning technique
for the LittleDog platform was used for experimentation only; we opted not to utilize the technology during
the trails.

The technique discussed above is what we called regressed MMP. It decomposes the problem into two
phases. The first phase utilizes the MMP algorithm to learn to mimic the overall navigational behavior
embodied by the footstep planner, while the second phase then scales the learned cost function to enable its
use as a heuristic. In order to shortcut this two-stage decomposition and more directly train the planner to
reproduce the desired cost-to-go values, this project inspired the development of a novel form of structured
prediction we call Maximum Margin Structured Regression (MMSR), which we experimentally validated in
(Ratliff et al., 2007a). Details of the approach can be found in both that paper and in (Ratliff, 2009). At a
high level, though, this approach can be viewed as a natural generalization of Maximum Margin Structured
Classification framework to the regression setting using techniques analogous to the well-understood Support
Vector Regression algorithm (Smola and Schölkopf, 2003).
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Figure 12: Validation results: Green indicates predicted next footstep, purple indicates desired next footstep,
and red indicates current stance. The associated cost function is provided gradating from red at high cost
regions to dark blue at low cost regions. The influence of the terrain features on the cost function is most
apparent in the left-most prediction whose hypotheses straddle the border between the terrain and flat
ground.

8.2 Footstep prediction using teleoperated demonstrations

Heuristic learning, discussed above, concentrated primarily on the problem of speed and implicitly assumed
that the planner finds efficiently executable sequences of footsteps. Unfortunately, this assumption rarely
holds in practice. The subtleties of trading off features to define a single scalar cost measuring footstep fitness
is difficult in real-world systems such as the LittleDog platform. On the other hand, demonstrating desired
behavior can be straightforward. Teleoperation provided a means by which we could demonstrate robust
and repeatable policies for crossing difficult terrain, and the resulting trajectory across the terrain implicitly
encoded important information about the desirability of candidate footstep locations. Using techniques
discussed more thoroughly in (Ratliff et al., 2007b) and (Ratliff et al., 2009a; Ratliff, 2009), we trained
a footstep prediction algorithm to greedily predict the next footstep as a function of terrain features and
course kinematic reachability features given the current four-foot configuration. We demonstrate that the
prediction algorithm can efficiently learn to trade off terrain costs with reachability costs, and in the process
learn an informed action model for the robot. This work represents one of the first implementations of our
novel exponentiated functional gradient algorithm for imitation learning (Ratliff et al., 2009a) which extends
the work on MMPBoost disucssed above. Figure 12 depicts the performance of the prediction algorithm on
few test examples, and figure 13 shows its performance on a greedy sequential prediction application across
both rugged and flat terrain.

We implemented and used this learned cost function on the LittleDog platform throughout the second half
of the Phase II trials of the Learning for Locomotion competition. Since the execution module was developed
and tested under the footstep planner’s action model, we incorporated only the terrain cost component of
the footstep prediction policy into the planner by retraining the cost function without the action features.
Under the new terrain costs, the footstep planner produced executable footstep sequences that embodied
the behavior of the human demonstrator. Accordingly, the resulting policy qualitatively tended to step
more frequently in stable local concavities and proved to be much more robust in practice than previous
hand-tuned attempts.

9 Conclusions

We have described a software framework for planning and control of a rough terrain quadruped robot.
Notable features of our system include a fast, anytime footstep planner guided by a cost map learned from
expert preferences, novel use of high-dimensional “pose certificates” to verify a low-dimensional planner,

21



Figure 13: The first two rows show predicted footstep sequences across rough terrain both with and without
the corresponding score function. The bottom row demonstrates a predicted sequence for walking across
flat ground. Generalization of quadruped footstep placement. The four foot stance was initialized to a
configuration off the left edge of the terrain facing from left to right. The images shown demonstrate a
sequence of footsteps predicted by the learned greedy planner using a fixed foot ordering. Each prediction
starts from result of the previous. The first row shows the footstep predictions alone; the second row
overlays the corresponding cost region (the prediction is the minimizer of this cost region). The final row
shows footstep predictions made over flat ground along with the corresponding cost region showing explicitly
the kinematic feasibility costs that the robot has learned.

and a novel trajectory optimization module that smooths trajectories and resolves potential collisions in
real-time.

9.1 Future Work

There remains much work to be done in order to produce a system that could be deployed on an autonomous
robot “in the wild”. First and foremost, the software here depends on the existence of a good map of the
world; obtaining such presents a substantial challenge outside of a laboratory environment.

In addition, we would like to investigate other ways in which learning can be brought to bear on the
problem of legged locomotion (and planning in general). The current work is solely focused on imitation
learning, with little adaptation online and none that generalizes. Our ultimate goal is to produce a system
that improves its own performance over time, avoiding repeated mistakes and exploiting plans that have
worked well in past situations.

In the past, we have used stochastic policy gradient methods to create randomized planners that learn
the characteristics of a particular problem domain (Zucker et al., 2008). We are interested in producing
analogous work of discrete forward search.

In the rare cases where no feasible footstep trajectory can be found, how can the failure get propagated
back to the planner to avoid risky behavior? We would like to use machine learning techniques to continuously
monitor execution and steer the planner away from problem areas in the future.

22



Acknowledgments

This research was funded by the DARPA Learning Locomotion project. The authors wish to thank Hanns
Tappeiner, Andrew Maas, Elliot Cuzzillo, Eric Whitman, and Alex Grubb for their valuable contributions
to the CMU Learning Locomotion effort.

References

O. Brock and O. Khatib. Elastic Strips: A Framework for Motion Generation in Human Environments. The
International Journal of Robotics Research, 21(12):1031, 2002.

M. Buehler, R. Playter, and M. Raibert. Robots step outside. In Proc. International Symposium on Adaptive
Motion in Animals and Machines, 2005.

J. Chestnutt. Navigation Planning for Legged Robots. PhD thesis, Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA, December 2007.

J. Chestnutt, M. Lau, KM Cheung, J. Kuffner, J. Hodgins, and T. Kanade. Footstep Planning for the Honda
ASIMO Humanoid. In Proc. IEEE Int’l Conf. on Robotics and Automation, May 2005.

L. E. Dubins. On curves of minimal length with a constraint on average curvature, and with prescribed
initial and terminal positions and tangents. American Journal of Mathematics, 79, 1957.

P. Felzenszwalb and D. Huttenlocher. Distance Transforms of Sampled Functions. Technical Report TR2004-
1963, Cornell University, 2004.

R. Geraerts and M. Overmars. Creating High-quality Roadmaps for Motion Planning in Virtual Environ-
ments. IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 4355–4361, 2006.

R. Herbrich, T. Graepel, and K. Obermayer. Support vector learning for ordinal regression. Artificial Neural
Networks, 1999. ICANN 99. Ninth International Conference on (Conf. Publ. No. 470), 1, 1999.

S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa. Biped walking
pattern generation by using preview control of zero-moment point. In IEEE International Conference on
Robotics and Automation, 2003.

M. Kalakrishnan. Personal communication, November 2009.

M. Kalakrishnan, J. Buchli, P. Pastor, and S. Schaal. Learning locomotion over rough terrain using terrain
templates. In Proc. IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems, 2009.

J. Kivinen, AJ Smola, and RC Williamson. Online learning with kernels. IEEE Transactions on Signal
Processing, 52(8):2165–2176, 2004.

S. Koenig and M. Likhachev. Dˆ* Lite. In Proceedings of the National Conference on Artificial Intelligence,
pages 476–483. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2002.

J.Z. Kolter and A.Y. Ng. Learning omnidirectional path following using dimensionality reduction. In Proc.
Robots, Science and Systems, 2007.

J.Z. Kolter and A.Y. Ng. Task-Space Trajectories via Cubic Spline Optimization. In Proc. IEEE Int’l Conf.
on Robotics and Automation, 2009.

J.Z. Kolter, M.P. Rodgers, and A.Y. Ng. A control architecture for quadruped locomotion over rough terrain.
In Proc. IEEE Int’l Conf. on Robotics and Automation, pages 811–818, 2008.

23



M. Likhachev, G. Gordon, and S. Thrun. ARA*: Anytime A* with provable bounds on sub-optimality.
Advances in Neural Information Processing Systems, 16, 2004.

M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun. Anytime dynamic A*: An anytime, replan-
ning algorithm. In Proceedings of the International Conference on Automated Planning and Scheduling
(ICAPS), pages 262–271, 2005.

J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley, 1984.

Marc Raibert. Legged robots that balance. MIT Press, 1986.

N. Ratliff. Learning to Search: Structured Prediction Techniques for Imitation Learning. PhD thesis, Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA, May 2009.

N. Ratliff, J. A. Bagnell, and M. Zinkevich. Maximum margin planning. In Twenty Second International
Conference on Machine Learning (ICML06), 2006.

N. Ratliff, J. A. Bagnell, and M. Zinkevich. (Online) subgradient methods for structured prediction. In
Artificial Intelligence and Statistics, San Juan, Puerto Rico, 2007a.

N. Ratliff, J.A. Bagnell, and S. Srinivasa. Imitation Learning for Locomotion and Manipulation. In IEEE-
RAS International Conference on Humanoid Robots, December 2007b.

N. Ratliff, D. Bradley, J.A. Bagnell, and J. Chestnutt. Boosting Structured Prediction for Imitation Learning.
In B. Scholkopf, J.C. Platt, and T. Hofmann, editors, Advances in Neural Information Processing Systems
19, Cambridge, MA, 2007c. MIT Press.

N. Ratliff, D. Silver, and J. A. Bagnell. Learning to search: Functional gradient techniques for imitation
learning. Autonomous Robots, Special Issue on Robot Learning, 2009a.

N. Ratliff, M. Zucker, J.A. Bagnell, and S. Srinivasa. CHOMP: Gradient Optimization Techniques for
Efficient Motion Planning. In Proc. IEEE Int’l Conf. on Robotics and Automation, May 2009b.

U. Saranli, M. Buehler, and D.E. Koditschek. RHex: A simple and highly mobile hexapod robot. The
International Journal of Robotics Research, 20(7):616, 2001.

A.J. Smola and B. Schölkopf. A tutorial on support vector regression. Technical report, Statistics and
Computing, 2003.

A. Stentz. The focussed D* algorithm for real-time replanning. Proceedings of the International Joint
Conference on Artificial Intelligence, pages 1652–1659, 1995.

M. Stolle. Finding and Transferring Policies Using Stored Behaviors. PhD thesis, Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA, May 2008.

Willow Garage. CHOMP Motion Planner. Willow Garage Blog, September 2009. URL http://www.
willowgarage.com/blog/2009/09/02/chomp-motion-planner. Retrieved on November 1, 2009.

M. Zucker. A data-driven approach to high level planning. Technical Report CMU-RI-TR-09-42, The
Robotics Institute, Carnegie Mellon University, January 2009.

M. Zucker, J. Kuffner, and J.A. Bagnell. Adaptive workspace biasing for sampling based planners. In Proc.
IEEE Int’l Conf. on Robotics and Automation, 2008.

24


	Optimization And Learning For Rough Terrain Legged Locomotion
	Recommended Citation
	Authors

	tmp.1486062772.pdf.gNE4n

