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Introduction
Cytokinesis in animal and fungal cells requires concerted func-
tions of an actomyosin ring (AMR), membrane trafficking, and 
localized ECM remodeling at the division site (Balasubrama-
nian et al., 2004; Strickland and Burgess, 2004; Eggert et al., 
2006; Barr and Gruneberg, 2007). The AMR, which consists 
of myosin-II and actin filaments, is thought to generate a con-
tractile force that powers the ingression of the plasma mem-
brane (PM). The AMR may also guide membrane deposition 
and ECM remodeling during cytokinesis (Vallen et al., 2000; 
Fang et al., 2010). Targeted membrane deposition is thought 
to increase surface area at the division site (Strickland and 
Burgess, 2004; Barr and Gruneberg, 2007) and may also deliver 
enzymatic cargoes for chitinous primary septum (PS) formation 
in the budding yeast Saccharomyces cerevisiae (Chuang and 
Schekman, 1996; VerPlank and Li, 2005) or localized ECM  
remodeling in animal cells. Importantly, defects in PS forma-
tion cause cytokinesis block in budding yeast (Bi, 2001; Schmidt 
et al., 2002; VerPlank and Li, 2005; Nishihama et al., 2009), 
and defects in ECM remodeling cause embryonic lethality 
with cells arrested in cytokinesis in Caenorhabditis elegans 

(Mizuguchi et al., 2003) and mice (Izumikawa et al., 2010). 
Thus, there are complex and interdependent relationships 
among the cellular events involved in cytokinesis.

It is generally assumed that the AMR consists of sev-
eral sarcomere-like structures, in which myosin-II bipolar fila-
ments slide on actin filaments to generate force for contraction 
(Schroeder, 1972; Sanger and Sanger, 1980; Satterwhite and 
Pollard, 1992). In addition, AMR contraction must be coupled 
with disassembly, as the volume of the ring decreases during 
furrow ingression (Schroeder, 1972; Bi, 2010; Mendes Pinto 
et al., 2012). This is different from muscle contraction, during 
which the number of sarcomeres (or contractile units) remains 
unchanged (Huxley, 1969). Experimental evidence in support 
of the “sarcomere disassembly” hypothesis is still lacking.  
Direct EM examination of the cleavage furrow has revealed that 
actin filaments are organized into parallel arrays of opposing 
polarity (Sanger and Sanger, 1980; Kamasaki et al., 2007) or as 
bundles of actin filaments (Maupin and Pollard, 1986) but failed 
to unambiguously identify myosin filaments. Thus, it is not 
clear how myosin-II is organized at the division site. FRAP 
analysis indicates that myosin-II is largely immobile at the 

Core components of cytokinesis are conserved from 
yeast to human, but how these components are 
assembled into a robust machine that drives cyto-

kinesis remains poorly understood. In this paper, we show 
by fluorescence recovery after photobleaching analysis 
that Myo1, the sole myosin-II in budding yeast, was mo-
bile at the division site before anaphase and became im-
mobilized shortly before cytokinesis. This immobility was 
independent of actin filaments or the motor domain of 
Myo1 but required a small region in the Myo1 tail that is 

thought to be involved in higher-order assembly. As ex-
pected, proteins involved in actin ring assembly (tropo-
myosin and formin) and membrane trafficking (myosin-V 
and exocyst) were dynamic during cytokinesis. Strikingly, 
proteins involved in septum formation (the chitin synthase 
Chs2) and/or its coordination with the actomyosin ring 
(essential light chain, IQGAP, F-BAR, etc.) displayed 
Myo1-dependent immobility during cytokinesis, suggest-
ing that Myo1 plays a scaffolding role in the assembly of 
a cytokinesis machine.
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(Fig. S1 D). The fluorescence intensity of Myo1-GFP at the bud 
neck decreased only 30% in 23 min after the initial bleaching in 
the cytosol, in comparison to a 20% fluorescence loss in an un-
bleached control cell in the same imaging field during the same 
period (Fig. S1 E). In contrast, when a similar experiment was 
performed on a cell carrying Tpm2-GFP (tropomyosin), which is 
highly dynamic (see Fig. 5 A), the fluorescence intensity of Tpm2 
at the bud neck decreased 50% in 50 s even after one bleach in 
the cytosol, whereas little or no change was observed for the con-
trol cell in the same field during the same period (Fig. S1, F–H). 
These FLIP data suggest that Myo1 cycles between the bud neck 
and the cytosol slowly. We also monitored the kinetics of Myo1 
localization during the cell cycle, and found that Myo1 signal at 
the bud neck reached its peak from bud emergence to the small-
budded stage (in <30 min; unpublished data). From this point on, 
Myo1 remained fairly constant at the bud neck (Fig. S1, I and J). 
Approximately 20 min before septin–hourglass splitting, Myo1 
intensity was briefly increased by 20% and then decreased in a 
linear fashion during AMR constriction (Fig. S1, I and J; Tully  
et al., 2009). Direct measurement of Myo1-GFP (the sole source 
of Myo1 expressed from its native promoter at its physiological 
locus) showed that nearly all of the Myo1 molecules were local-
ized to the bud neck around the small-budded stage. Because of 
the very dim signal of Myo1-GFP in the cytosol, it was rather 
difficult to obtain an accurate and meaningful measurement of 
Myo1 in this pool. However, based on fluorescence recovery after 
full-ring bleaching (Fig. S1 A) and the measurement of Myo1 in-
tensity at the bud neck throughout the cell cycle (Fig. S1, I and J), 
we estimate that ≥80% of the total cellular Myo1 is localized to 
the bud neck before cytokinesis. Together, these data indicate 
that the majority of Myo1 are localized to the division site early 
in the cell cycle and maintained there with little flux between the 
ring and the cytosol.

To determine Myo1 dynamics within the ring structure at 
the bud neck, we bleached a half of the ring in cells at different 
stages of the cell cycle. In small-budded cells, Myo1-GFP signal 
in the bleached region recovered quickly with a recovery rate 
(t1/2) of 20.4 ± 1.3 s and a maximal recovery of 19.3 ± 0.8% 
(Fig. 1 A, solid circles; and Video 2, left), whereas the GFP sig-
nal in the unbleached region decreased correspondingly (Fig. 1 A, 
open circles), suggesting that Myo1 moves laterally from the 
unbleached region to the bleached region. The magnitude of 
recovery is significant, considering that the maximally possi-
ble recovery would be 50% if all the recovery in the bleached 
half were attributed to lateral movement within the ring structure. 
This is a reasonable assumption given that Myo1 displays little 
flux between the ring and the cytosol (see the preceding para-
graphs). In large-budded cells, the maximal recovery was limited 
to 7.1 ± 1.1% (Fig. 1 B and Video 2, middle). In cells undergoing 
cytokinesis, virtually no recovery was observed (Fig. 1 C and 
Video 2, right). Thus, Myo1 is mobile within the ring structure 
during the early part of the cell cycle and becomes immobilized 
toward the late part of the cell cycle.

To determine the transition point in Myo1 mobility within 
the ring structure more precisely, we performed similar FRAP 
analysis on cells carrying mCherry-labeled Nup57, a component 
of the nuclear pore complex (Alber et al., 2007) that marks the 

cleavage furrow during cytokinesis in C. elegans (Carvalho  
et al., 2009) and Drosophila melanogaster (Goldbach et al., 
2010; Uehara et al., 2010) but undergoes rapid turnover in  
the fission yeast Schizosaccharomyces pombe (Pelham and 
Chang, 2002), Dictyostelium discoideum (Yumura, 2001; Zhou 
et al., 2010), and mammalian cells (Kondo et al., 2011). In S. 
cerevisiae, myosin-II is reported to be dynamic in one study 
(Lister et al., 2006) but undergoes a dynamic to immobile tran-
sition from G2/M to cytokinesis in another study (Dobbelaere 
and Barral, 2004). These observations suggest that there are at 
least two modes of myosin-II organization at the division site, 
but their functional significance and regulatory mechanisms remain 
unknown. In this study, we show that Myo1, the sole myosin-II 
heavy chain in S. cerevisiae (Bi et al., 1998; Lippincott and Li, 
1998a), displays cell cycle–regulated changes in mobility at the 
division site and that Myo1 immobility during cytokinesis is 
regulated through a putative assembly domain in its tail.

Core components of cytokinesis are conserved from yeast 
to human, but how these components are assembled into a 
robust machine that drives cell cleavage is not well understood. 
In this study, we performed FRAP analysis on 13 cytokinesis 
proteins in budding yeast to compare their individual and col-
lective behaviors. We also performed similar analysis on these 
proteins in different mutants to determine their dependency 
relationships. We found that different proteins display distinct 
dynamics during the cell cycle and that the immobility of all 
other proteins during cytokinesis depends on Myo1, but not vice 
versa, suggesting that Myo1 plays a scaffolding role in the as-
sembly of a cytokinesis machine.

Results
Myosin-II is mobile at the division site 
during the early part of the cell cycle and 
becomes progressively immobilized from 
anaphase to the onset of cytokinesis
To determine the dynamics of the AMR components, we first 
analyzed the dynamics of Myo1, the sole myosin-II heavy chain 
in budding yeast, during the cell cycle. When the entire Myo1-
GFP ring at the bud neck was photobleached, the mean of the 
maximal fluorescence recovery was <8% regardless of cell 
cycle stages (Fig. S1, A–C; Video 1; and the entire FRAP data 
with individual curves and quantitative analyses were also shown 
in Figs. S3 and S4), which are marked by bud size (see Materials 
and methods for details) and septin–hourglass splitting (see 
associated videos; not depicted in figures), a cellular event that 
coincides with the onset of cytokinesis (Lippincott et al., 2001). 
The recovery was noticeably higher in small-budded cells 
(7.2 ± 1.1%) than in cells undergoing cytokinesis (1.1 ± 1.3%). 
These FRAP data suggest that there is a limited exchange of 
Myo1 between the bud neck and the cytosol throughout the cell 
cycle, which could be caused by a slow rate of exchange and/
or a small pool of Myo1 in the cytosol.

As a complementary approach to FRAP, we also used fluor-
escence loss in photobleaching (FLIP) to probe the dynamics  
of Myo1 at the bud neck. A cytosolic region of a mother cell 
with a small bud was photobleached sequentially four times 

http://www.jcb.org/cgi/content/full/jcb.201208030/DC1
http://www.jcb.org/cgi/content/full/jcb.201208030/DC1
http://www.jcb.org/cgi/content/full/jcb.201208030/DC1
http://www.jcb.org/cgi/content/full/jcb.201208030/DC1
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dbf20; unpublished data). Together, these data indicate that 
Myo1 is mobile within the ring structure before the onset of ana-
phase, increasingly immobilized from anaphase to telophase, 
and becomes completely immobile during cytokinesis.

We then probed the dynamics of the regulatory light chain 
(RLC) and the essential light chain (ELC) for Myo1. Mlc2, the 
RLC for Myo1, displays a localization pattern identical to Myo1 
throughout the cell cycle, and its localization to the bud neck 

nuclear position in the cell. In wild-type cells, the penetration of 
the nucleus from the mother into the daughter cell compartment 
is correlated with the onset of anaphase (Yang et al., 1997). We 
found that Myo1 became increasingly immobile from middle or 
late anaphase to the onset of cytokinesis (Fig. 1, D–F). In addi-
tion, Myo1 remained highly mobile in mutants arrested at the 
onset of anaphase (cdc16 and cdc23) and was nearly immobile 
in mutants arrested at the mitotic exit (cdc15-2 and dbf2-1 

Figure 1. Myo1 displays cell cycle–regulated dynamics at the division site. (A–C) Myo1 is mobile at the division site in small-budded cells (A), becomes 
less mobile in large-budded cells (B), and is immobilized during cytokinesis (C), indicated by the presence of a double septin ring at the division site, 
which is not shown in any figure but can be seen in the figure-associated video. A half of the Myo1-GFP ring from cells at different stages of the cell cycle 
(indicated by bud size) of the strain XDY286 (MYO1-GFP CDC3-RFP) was photobleached, and fluorescence recovery in the bleached and unbleached 
regions was followed over time. Except where noted, FRAP analysis was performed in a similar way throughout the study. Quantitative analysis and the 
corresponding kymograph for a single representative cell are shown in each plot of the main figures. Individual recovery curves for all cells examined for 
a given protein at a specific cell cycle stage and their associated quantitative analyses are shown in Figs. S3 and S4. (D–F) Myo1 becomes immobilized 
in late anaphase or telophase. Large-budded cells (n = 12) of the strain YEF6036 (MYO1-GFP CDC3-RFP NUP57-RFP) at different phases of the cell cycle 
(indicated by the nuclear pore protein Nup57-RFP) were subjected to FRAP analysis to determine the precise timing of Myo1 immobilization during the cell 
cycle. WT, wild type.

http://www.jcb.org/cgi/content/full/jcb.201208030/DC1
http://www.jcb.org/cgi/content/full/jcb.201208030/DC1
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cells, Mlc1 displayed immobility from its initial localization 
to the completion of cytokinesis (see Fig. 7 A and Video 8). 
Together, these data indicate that myosin-II undergoes cell cycle–
regulated changes in dynamics, being mobile within the ring 
structure early in the cell cycle and becoming progressively im-
mobilized from anaphase to the onset of cytokinesis.

The change in Myo1 dynamics is also reflected by the dy-
namics of its binding partners during the cell cycle. Bni5, a 
septin-binding protein (Lee et al., 2002), mediates Myo1 target-
ing to the division site from late G1 to the onset of telophase, 
whereas Mlc1 and Iqg1 mediate Myo1 targeting from the onset 
of anaphase to the end of cytokinesis (Fang et al., 2010). Not 
surprisingly, Bni5 was mobile at the division site during its entire 
stay in the presence or absence of Myo1 (Fig. S2, E–H; and 

completely depends on its binding to Myo1 (Luo et al., 2004). 
Mlc2-GFP showed nearly identical dynamics as Myo1-GFP 
during the cell cycle when either the entire ring (not depicted) 
or a half of the ring (Fig. S2, A–C) was bleached.

Mlc1, the ELC for Myo1 (Luo et al., 2004), also binds to 
Myo2 (a myosin-V in budding yeast) and Iqg1 (the sole IQGAP 
in budding yeast) via their respective IQ motifs (Stevens and 
Davis, 1998; Boyne et al., 2000; Shannon and Li, 2000). In 
small-budded cells, Mlc1 localizes to the bud cortex as puncta, 
reflecting its association with myosin-V and secretory vesicles 
(Wagner et al., 2002; Luo et al., 2004). These puncta were highly 
dynamic (Fig. S2 D). Mlc1 localizes to the bud neck only in 
large-budded cells and cells undergoing cytokinesis (Shannon 
and Li, 2000; Wagner et al., 2002; Luo et al., 2004). In these 

Figure 2. Actin filaments are not required for 
Myo1 immobility during cytokinesis. (A) Myo1 
remains immobile during cytokinesis in bni1 
cells. Myo1-GFP ring in a cell of the strain 
YEF6116 (bni1 MYO1-GFP CDC3-RFP) un-
dergoing cytokinesis was analyzed by FRAP. 
(B–E) Myo1-GFP displays similar dynamics 
in LatA- and DMSO-treated cells. Cells of the 
strain XDY286 (MYO1-GFP CDC3-RFP) were 
subjected to FRAP analysis in the presence 
LatA (B–D) or DMSO (E, control) during the indi-
cated stages of the cell cycle. WT, wild type.

http://www.jcb.org/cgi/content/full/jcb.201208030/DC1
http://www.jcb.org/cgi/content/full/jcb.201208030/DC1
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A small region near the C terminus  
of Myo1 is required for its immobility 
during cytokinesis
All myosin-IIs from animal cells can assemble into bipolar fil-
aments in vitro, and this assembly invariably depends on a re-
gion near their C termini, called the assembly domain, which 
is required for antiparallel interaction of myosin-II molecules 
(Trybus, 1991; Tan et al., 1992). Myo1 tail also contains a putative 
assembly domain near its C terminus, which can only localize to 

Video 3, left); in contrast, Mlc1 (see Fig. 7 A and Video 8) and 
Iqg1 (see Fig. 7 B) displayed immobility throughout their local-
ization at the division site.

Actin filaments, motor domain, and light 
chain binding sites are not required for 
Myo1 immobility during cytokinesis
The timing of Myo1 mobility changes during the cell cycle cor-
relates with the timing of actin ring assembly and AMR constric-
tion (Epp and Chant, 1997; Bi et al., 1998; Lippincott and Li, 
1998a). To determine the possible role of actin ring assembly in 
regulating Myo1 immobility, we examined Myo1 dynamics in 
bni1 cells during the cell cycle. Bni1 and Bnr1 are two formins 
in budding yeast that share an essential role in nucleating actin 
cable assembly to mediate polarized cell growth during budding 
(Pruyne et al., 2002; Sagot et al., 2002). During cytokinesis, 
Bni1 is the only formin localized at the division site (Buttery  
et al., 2007) and plays an important role in actin ring assembly 
and cytokinesis (Vallen et al., 2000; Tolliday et al., 2002). We 
found that deletion of BNI1 did not affect Myo1 dynamics dur-
ing the cell cycle, including its immobility during cytokinesis  
(a cell in which Myo1-GFP failed to constrict presumably be-
cause of the absence of the actin ring; Fig. 2 A and Video 3, right). 
Because about one third of bni1 cells are still able to form a 
faint actin ring, we disrupted all actin filaments using latrunculin 
A (LatA; Ayscough et al., 1997) and then examined Myo1 dy-
namics. The LatA treatment did not affect Myo1 behavior during 
the cell cycle (Fig. 2, B–E; and Video 3, right). Myo1 was mobile 
at the division site in small-budded cells (t1/2, 27.8 ± 7.5; maximal 
recovery, 18.6 ± 3.7%; n = 6), less mobile in large-budded cells 
(maximal recovery, 6.9 ± 1.2%; n = 5), and became immobile 
during cytokinesis (n = 6). As expected, Myo1-GFP failed to con-
strict in LatA-treated cells (Fig. 2 D and Video 3, right), in con-
trast to the DMSO-treated control cell (Fig. 2 E). These data 
indicate that the actin ring and thus AMR constriction are not re-
quired for Myo1 immobility during cytokinesis.

The tail of Myo1 is sufficient for directing the assembly of 
a “headless” AMR (Fang et al., 2010), which largely fulfills its 
role in cytokinesis (Lord et al., 2005; Fang et al., 2010). How-
ever, this headless AMR constricts with 70–80% of the con-
striction rate of a normal AMR (Lord et al., 2005; Fang et al., 
2010). To determine whether the head domain of Myo1, which 
includes its motor domain, a putative actin binding site, and the 
binding sites for both ELC and RLC, plays any role in regulat-
ing its immobility during cytokinesis, we performed FRAP 
analysis on yeast cells in which the chromosomal copy of MYO1 
was precisely replaced with the Myo1 tail (residues 856–1,928)–
coding sequence (Fang et al., 2010). Surprisingly, the dynamic 
behavior of the Myo1 tail was very similar to that of the full-
length protein, being mobile at the division site in small-budded 
cells (t1/2, 22.7 ± 3.2; maximal recovery, 27.3 ± 2.8%; n = 12; 
Fig. 3 A and Video 4, left) and less mobile in large-budded cells 
(maximal recovery, 12.4 ± 1.6%; n = 7; Fig. 3 B and Video 4, 
middle) but becoming immobilized during cytokinesis (n = 7; 
Fig. 3 C and Video 4, right). Thus, the regulation of Myo1 dy-
namics during the cell cycle is largely mediated by its tail not its 
head domain.

Figure 3. The tail of Myo1 confers its dynamic property during the cell 
cycle. (A–C) Myo1-Tail-GFP in a small-budded cell (A), a large-budded cell 
(B), and a cell undergoing cytokinesis (C) of the strain XDY288 (myo1-Tail-GFP 
CDC3-RFP) was analyzed by FRAP.

http://www.jcb.org/cgi/content/full/jcb.201208030/DC1
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2004; Moseley and Goode, 2006; Pollard, 2008). The formin 
Bni1 localizes to the sites of polarized growth during the cell 
cycle, including the bud neck during cytokinesis, whereas the 
formin Bnr1 localizes to the mother side of the bud neck from 
bud emergence to the onset of cytokinesis (Pruyne et al., 2004; 
Buttery et al., 2007). Thus, Bni1 is the only formin associated 
with the actin ring during cytokinesis. FRAP analysis indicates 
that Bni1-3GFP, expressed from its native promoter, is dynamic 
at the bud cortex as well as at the bud neck (Buttery et al., 2007). 
In contrast, the neck-localized Bnr1-GFP, expressed from its 
native promoter, is relatively immobile (Buttery et al., 2007). 
These observations are essentially confirmed in our study. In our 
experiments, GFP-tagged Bni1, expressed from its native pro-
moter and carried on a high-copy plasmid (a single GFP-tagged 
Bni1 did not produce a signal strong enough for our study),  
localized to the division site at the onset of cytokinesis and was 
highly dynamic (Fig. S2 J). After full-ring bleaching, Bni1 dis-
played a recovery rate (t1/2) of 14.6 ± 1.3 s and a maximal recov-
ery of 31.1 ± 1.9%. As expected, GFP-tagged Bnr1, expressed 
from a methionine promoter carried on a plasmid, was largely 
immobile throughout the cell cycle (Fig. S2 I).

GFP-tagged tropomyosins have been used to label the  
actin ring in live cells of the budding and fission yeasts (Pelham 
and Chang, 2002; Yoshida et al., 2006). We found that GFP-
tagged Tpm2 localized to the division site 1–2 min before the 
onset of cytokinesis and was highly dynamic, with a recovery 
rate (t1/2) of 2.0 ± 0.5 s and a maximal recovery of 18.6 ± 2.9% 
(Fig. 5 A and Video 6, left). Together, these data indicate that 
actin ring–associated proteins, in contrast to myosin-II, are dy-
namic at the bud neck throughout cytokinesis.

To determine the dynamics of membrane trafficking com-
ponents during cytokinesis, we performed FRAP analysis on 
cells carrying GFP-tagged Myo2 (myosin-V) and Exo84 (a sub-
unit of the exocyst). Myo2 is required for the transport of post-
Golgi vesicles along actin cables to the sites of polarized growth, 
including the bud neck during cytokinesis (Bretscher, 2003). 
Exo84 is a vesicle-associated subunit of the exocyst that is re-
quired for the tethering of post-Golgi vesicles to the PM during 
polarized cell growth and cytokinesis (Guo et al., 2000; Boyd 
et al., 2004). Both Myo2 and Exo84 arrive at the division site 
around the onset of cytokinesis (Fang et al., 2010; Wloka et al., 
2011). Upon full-ring bleaching, Myo2-GFP recovered with a 
fast rate (t1/2) of 11.0 ± 1.3 s and a maximal recovery of 47.1 ± 
5.0% (Fig. 5 B and Video 6, middle) throughout cytokinesis 
(AMR constriction was marked by RFP-tagged Myo1 in the 
same cells). Similarly, Exo84 recovered with a fast rate (t1/2) of 
12.2 ± 0.6 s and a maximal recovery of 35.9 ± 2.0% (Fig. 5 C 
and Video 6, right; Boyd et al., 2004). The dynamic properties 
of Myo2 and Exo84 are consistent with their role in membrane 
trafficking during cytokinesis.

Proteins involved in septum formation  
or its coordination with the AMR  
display Myo1-dependent immobility  
during cytokinesis
Chs2, the chitin synthase II, is delivered to the bud neck at 
the onset of cytokinesis by the exocytic machinery to execute 

the division site if it coexists with a Myo1 molecule harboring 
the targeting domains (mTD1 and TD2) near the middle of its 
tail (Fig. 4 A; Fang et al., 2010). Strikingly, seven of the 10 
point mutations in MYO1 that are synthetically lethal with the 
deletion of HOF1 (Nishihama et al., 2009), which encodes an 
F-BAR protein involved in cytokinesis (Kamei et al., 1998; 
Lippincott and Li, 1998b; Vallen et al., 2000), are clustered 
within or near the putative assembly domain, highlighting the 
importance of this region in Myo1 function and cytokinesis 
(Fig. 4 A). Six of the seven are stop codon mutations, which de-
fine five distinct truncation alleles of MYO1 (Fig. 4 A). Based 
on these observations, we hypothesized that Myo1 may undergo 
cell cycle–triggered higher-order assembly, forming bipolar 
filaments during cytokinesis that account for its immobility.

To test this hypothesis, we performed FRAP analysis on 
cells carrying one of four truncation alleles of MYO1 (stopped 
at residue 1,483, 1,535, 1,633, or 1,798) isolated from the hof1 
synthetic lethal screen as well as a truncation allele deleted for 
the coding sequence of a smaller C-terminal region (stopped 
at residue 1,903), including the predicted nonhelical tailpiece 
(Fig. 4 A). Similar nonhelical regions have been implicated in 
filament assembly for smooth muscle and nonmuscle myosin-IIs 
(Trybus, 1991). Like the wild-type protein, Myo1 lacking the 
putative nonhelical region was immobile during cytokinesis, as 
indicated by the half-ring bleaching (Fig. 4 B and Video 5, left), 
and virtually no recovery was observed when the entire ring 
was bleached (Fig. 4 C). Thus, the putative nonhelical region 
of Myo1 is not required for its immobility during cytokinesis. 
In contrast, Myo1-(AA1–1798) was mobile at the division site 
during cytokinesis (t1/2, 12.7 ± 3.4; maximal recovery, 18.3 ± 
2.1%; n = 8; Fig. 4 D and Video 5, right), even though its ex-
pression level was similar to that of the full-length protein or 
Myo1 lacking the putative nonhelical region (Fig. 4 F). In addi-
tion, when the entire ring was bleached during cytokinesis, the 
recovery was noticeably higher than that of the full-length pro-
tein (Fig. 4 E compare with Fig. S1 C). The other three Myo1 
variants with larger truncations also displayed mobility, al-
though their overall signal at the bud neck was dimmer than 
the full-length or Myo1-(AA1–1798) proteins during cytoki-
nesis (unpublished data). Together, these data demonstrate that 
a 105-aa fragment (residues 1,798–1,903) near the C terminus 
of Myo1 is essential for the establishment and/or maintenance 
of its immobility during cytokinesis.

Actin ring–associated proteins and 
membrane trafficking components are 
dynamic during cytokinesis
To gain insight into the construction of the cytokinesis machin-
ery, we compared the dynamics of Myo1 and other cytokinesis 
proteins by performing FRAP analysis on those proteins in-
volved in actin ring assembly, membrane trafficking, and sep-
tum formation. Because GFP-tagged actin is not functional and 
does not label actin cables or the actin ring (Doyle and Botstein, 
1996), we probed the dynamics of actin ring–associated proteins 
(formins and tropomyosin) instead of actin itself. Both formin 
and tropomyosin are universally required for nucleating and sta-
bilizing the actin filaments in the AMR (Balasubramanian et al., 

http://www.jcb.org/cgi/content/full/jcb.201208030/DC1
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Figure 4. A small C-terminal region of Myo1 
is required for its immobility during cytokinesis.  
(A) Myo1 motifs and the positions of myo1 mutations 
that are synthetically with hof1. (B and C) Myo1 
dynamics are not affected by the deletion of its  
putative nonhelical region. Half (B) and full (C) rings 
of Myo1-(AA1903Stop)-GFP in cells of the strain 
YEF6617 (myo1-(AA1903Stop)-GFP CDC3-RFP) 
were photobleached during cytokinesis. (C and D) 
The putative assembly domain of Myo1 is required 
for its immobility during cytokinesis. Half (C) and 
full (D) rings of GFP-Myo1-(AA1798Stop) in cells 
of the strain YEF6616 (GFP-myo1-(AA1798Stop) 
CDC3-RFP) were photobleached during cytokinesis. 
Except where noted, the first bleaching always cor-
responds to time 0, and additional bleaching (either 
half bleach or total bleach) is indicated by the ar-
rowhead. (F) Expression level of the full-length and 
truncation alleles of MYO1. Cell lysates of strains 
YEF6618 (GFP-MYO1), YEF6617, YEF6616, and 
YEF473 (MYO1, negative control) were probed for 
the expression levels of Myo1 variants by Western 
blotting using a GFP antibody. As a loading control, 
the levels of the septin Cdc11 from the same cell 
lysates were probed using an anti-Cdc11 antibody.
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immobile (Fig. 6 A and Video 7). Together, these results sug-
gest that (a) Chs2 delivery to the division site is complete within 
a few minutes of its initial localization; (b) once delivered, Chs2 
may be closely associated with Myo1; and (c) Chs2 is not recy-
cled back to the furrow membrane after its endocytic removal 
during the late stage of cytokinesis. Thus, Chs2 displays bipha-
sic dynamics during cytokinesis.

To determine whether the immobility of Chs2 during  
cytokinesis depends on Myo1, we examined Chs2 dynamics 
in myo1 cells. Strikingly, Chs2 became mobile throughout 
cytokinesis and, as expected, failed to constrict (Fig. 6 B and 
Video 7), suggesting that Chs2 is immobilized in a Myo1-
dependent manner.

To determine whether Myo1 and other major components 
of the division machinery act in unison during cytokinesis such 
that deletion of one component will change the organization 
and/or the dynamics of other components, we examined Myo1 
dynamics during cytokinesis in several cytokinesis mutants. In 
chs2 or inn1 cells, in which PS formation is completely 
blocked and cytokinesis is more defective than in myo1 cells 
(Bi, 2001; Schmidt et al., 2002; VerPlank and Li, 2005; Sanchez-
Diaz et al., 2008; Nishihama et al., 2009; Meitinger et al., 2010), 
Myo1 remained immobile (Fig. 6, C and D; and Video 7). The 
Myo1 immobility was also observed in mlc2, bni1, bnr1, 
hof1, and cyk3 cells (unpublished data). Myo1 dynamics 
during cytokinesis could not be probed in mlc1 and iqg1 
cells, as both Mlc1 and Iqg1 are required for Myo1 targeting 
to the division site during cytokinesis (Fang et al., 2010), and 
mlc1 and iqg1 are lethal in most strain backgrounds under 
normal growth conditions (Epp and Chant, 1997; Stevens and 
Davis, 1998). Together, these data indicate that the immobility 
of Chs2 during cytokinesis, but not its delivery to the division 
site, depends on Myo1; in contrast, Myo1 immobility does not 
depend on any other aforementioned cytokinesis proteins.

Besides Chs2, several other proteins (Mlc1, Iqg1, Inn1, 
Hof1, and Cyk3) have been implicated in PS formation or  
its coordination with the AMR (Korinek et al., 2000; Wagner  
et al., 2002; Nishihama et al., 2009; Meitinger et al., 2010). 
To determine their dynamics and explore their relationships 
with Myo1 during cytokinesis, we performed FRAP analysis 
of these proteins in wild-type and myo1 cells. As described 
earlier, in a wild-type strain, Mlc1, the ELC for Myo1, was 
immobile upon its localization to the bud neck in large-budded 
cells and remained immobile during cytokinesis (Fig. 7 A, left; 
and Video 8). However, in myo1 cells, Mlc1 became dynamic 
(Fig. 7 A, right; and Video 8). Both half-ring and full-ring 
(Fig. 7 A, arrowhead) bleaching indicates that the recovery is 
largely caused by cytosol–neck exchange. Like Mlc1, Iqg1 was 
immobile during cytokinesis (Fig. 7 B, left; and Video 8) but 
became dynamic in myo1 cells (Fig. 7 B, right; and Video 8). 
These data suggest that even though Mlc1 and Iqg1 are recruited to 
the neck in a Myo1-independent fashion and are actually required 
for Myo1 localization at the division site during cytokinesis (Fang 
et al., 2010). Myo1, in turn, is required for their organization.

Inn1 plays an essential role in PS formation and interacts 
with the SH3 domain of the F-BAR protein Hof1 and of the trans-
glutaminase domain–containing protein Cyk3 through distinct 

its essential role in PS formation (Sburlati and Cabib, 1986;  
Chuang and Schekman, 1996; VerPlank and Li, 2005). Bleach-
ing of the full (unpublished data)- or half-ring of Chs2-GFP 
within the first 3–4 min after its localization to the bud neck led 
to a full recovery (Fig. 6 A and Video 7), which presumably 
reflects its timed and continuous delivery to the division site 
by the exocytic machinery. After this period, Chs2 became 

Figure 5. Actin ring–associated proteins and membrane trafficking com-
ponents are dynamic during cytokinesis. (A) Tropomyosin is highly dy-
namic during cytokinesis. The full ring of Tpm2-GFP from a cell of the strain 
YEF6197 (TPM2-GFP CDC3-RFP) undergoing cytokinesis was analyzed by 
FRAP. (B and C) Membrane trafficking components are dynamic during 
cytokinesis. The full rings of Myo2-GFP and Exo84-GFP from cells of the 
strains YEF6001 (MYO2-GFP, pRS316-MYO1-mCherry) and YEF5862 
(EXO84-GFP CDC3-RFP) during cytokinesis were analyzed by FRAP. WT, 
wild type.

http://www.jcb.org/cgi/content/full/jcb.201208030/DC1
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Because Myo1 immobility depends on a small region near 
its C-terminal end, we examined Chs2 and Hof1 dynamics in cells 
carrying the myo1-(AA1798Stop) allele (compare with Fig. 4,  
A and D). Both Chs2 (Fig. 8 A and Video 10, left) and Hof1 
(Fig. 8 B and Video 10, right) became mobile at the division site 
during cytokinesis in the majority of the cells examined. We 
also probed the dynamics of Chs2 and Hof1 in cells carrying the 
myo1-(AA1535Stop) allele (compare with Fig. 4 A). In this case, 
Chs2 and Hof1 were mobile in all cells examined (unpublished 
data). Thus, the immobility of Chs2 and Hof1 depends on the 
immobility, not just the presence, of Myo1 at the division site.

Discussion
Myo1 tail dictates its dynamics during  
the cell cycle
In this study, we show that Myo1 undergoes only limited ex-
change between the bud neck and the cytosol. However, Myo1 
organization at the bud neck is clearly cell cycle regulated. 
Myo1 moves laterally at the bud neck before anaphase and then 

PXXP motifs in its C terminus (Nishihama et al., 2009). Both 
Hof1 and Cyk3 are also involved in PS formation (Korinek  
et al., 2000; Vallen et al., 2000; Meitinger et al., 2010). Inn1 local-
ized to the bud neck at the onset of cytokinesis (Sanchez-Diaz 
et al., 2008; Nishihama et al., 2009) and remained immobile 
throughout the division process (Fig. 7 C, left; and Video 9). 
However, in myo1 cells, Inn1 became more dynamic (Fig. 7 C, 
right; and Video 9). Hof1 was relatively dynamic until the 
onset of cytokinesis when it quickly became immobile and 
remained so during cytokinesis (Fig. 7 D, left; Video 9; and not 
depicted). Hof1 became much more dynamic in myo1 cells 
(Fig. 7 D, right; and Video 9). Thus, the immobility of Inn1 
and Hof1 depends on Myo1. Interestingly, Cyk3 was dynamic 
throughout cytokinesis (t1/2 of 7.4 ± 0.9 s and maximal recov-
ery of 31.7 ± 1.9% after full-ring bleaching; Fig. S2 K). These 
results suggest that Inn1 and Hof1 are closely associated with 
Myo1 during cytokinesis, whereas Cyk3 is fluxing between 
the bud neck and the cytosol. Together, our data indicate that 
proteins involved in PS formation, with the exception of Cyk3, 
display Myo1-dependent immobility during cytokinesis.

Figure 6. Chs2 displays biphasic dynamics during cytokinesis, and its immobility depends on Myo1. (A) Chs2 is dynamic and then immobile during 
cytokinesis. Chs2-GFP in the strain YEF5874 (CHS2-GFP CDC3-RFP) was bleached sequentially during cytokinesis. Time 0 corresponds to the initial local-
ization of Chs2 to the bud neck. Arrowheads denote bleaching events. Solid and dashed lines indicate the intensity measurements for the unbleached and 
bleached areas, respectively. (B) Chs2 immobility depends on Myo1. Chs2-GFP in the strain YEF6336 (myo1 CHS2-GFP CDC3-RFP) was subjected to 
FRAP analysis. Note that the duration of Chs2 at the bud neck was shorter, and the Chs2 signal was weaker in the myo1 strain than in the wild-type (WT) 
strain. (C and D) Myo1 immobility during cytokinesis does not depend on Chs2 and Inn1. Myo1-GFP in strains YEF6273 (chs2 MYO1-GFP CDC3-RFP) 
and YEF6230 (inn1 MYO1-GFP CDC3-RFP) was analyzed by FRAP.

http://www.jcb.org/cgi/content/full/jcb.201208030/DC1
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Similarly, myosin-II does not undergo rapid exchange be-
tween the AMR and the cytosol during cytokinesis in C. elegans 
(Carvalho et al., 2009). In contrast, myosin-II exchanges 
rapidly between the AMR and the cytosol in D. discoideum 

becomes immobilized from late anaphase to telophase and re-
mains immobile during cytokinesis. This progressive immobi-
lization of myosin-II from anaphase to cytokinesis also occurs 
in Drosophila (Goldbach et al., 2010; Uehara et al., 2010). 

Figure 7. Proteins involved in septum forma-
tion or its coordination with the AMR display 
Myo1-dependent immobility during cytoki-
nesis. (A–D) The immobility of Mlc1, Iqg1, 
Inn1, and Hof1 during cytokinesis depends on 
Myo1. FRAP analysis was performed on the 
indicated proteins in cells undergoing cyto-
kinesis of the following strains: (A) YEF6065 
(CDC3-RFP, pUG34-MLC1; left) and YEF6351 
(myo1 CDC3-RFP, pUG34-MLC1; right); (B) 
YEF6140 (CDC3-RFP, pUG35-IQG1; left) and 
YEF6356 (myo1 CDC3-RFP, pUG35-IQG1; 
right, full-ring bleaching); (C) YEF6138 (INN1-
GFP CDC3-RFP; left) and YEF6357 (myo1 
INN1-GFP CDC3-RFP; n = 5; right); and (D) 
YEF6131 (HOF1-GFP CDC3-RFP; left) and 
YEF6358 (myo1 HOF1-GFP CDC3-RFP; right).  
Arrowheads denote additional half-ring or full-
ring bleaching. WT, wild type.
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immobility during cytokinesis in Drosophila (Uehara et al., 
2010). In this case, when the RLC is locked in a state promoting 
myosin filament assembly, myosin-II becomes much more im-
mobile even in metaphase, when it is usually highly dynamic 
(Uehara et al., 2010). Unfortunately, the role of the assembly 
domain in regulating myosin-II immobility during cytokinesis 
could not be examined in Drosophila, as myosin-II lacking this 
domain fails to accumulate at the division site (Uehara et al., 
2010). However, it has been demonstrated that the assembly 
domain dictates isoform-specific myosin-II dynamics in mi-
grating mammalian cells (Sandquist and Means, 2008). Col-
lectively, it is likely that cell cycle–regulated Myo1 filament 
assembly accounts for its immobility during cytokinesis.

Myo1 plays a scaffolding role  
during cytokinesis
How does the cell build a division machine? To address this 
question, we analyzed the dynamics of 13 cytokinesis proteins in 
budding yeast during the cell cycle under the same experimental 
conditions (Fig. 9). Different cytokinesis proteins display dis-
tinct and functionally relevant dynamics, ranging from rapid 
turnover to complete immobility. The AMR displays a dichot-
omy in dynamics, with myosin-II (myosin heavy chain, RLC, 
and ELC) being immobile and actin ring–associated compo-
nents (formin and tropomyosin) being dynamic. Actin and actin-
associated proteins are also dynamic during cytokinesis in fission 
yeast (Pelham and Chang, 2002) and cultured mammalian cells 
(Guha et al., 2005; Murthy and Wadsworth, 2005). As expected, 
components of the membrane trafficking machine, such as 
myosin-V and the exocyst, are dynamic during cytokinesis. 
Surprisingly, the secretory cargo Chs2 displays a unique biphasic 
behavior during cytokinesis, showing myosin-V–like dynamics 
during its initial localization to the division site, followed by 
myosin-II–like dynamics during the rest of cytokinesis, suggesting 

(Yumura, 2001; Yumura et al., 2008; Zhou et al., 2010) yet dis-
plays no lateral movement within the AMR during cytokinesis 
(Yumura, 2001). On the other hand, myosin-II in the fission 
yeast S. pombe and mammalian cells is clearly mobile at the 
division site during cytokinesis (Pelham and Chang, 2002; 
Clifford et al., 2008; Kondo et al., 2011). However, in both 
cases, only one of the myosin-II isoforms (Myo2 in fission yeast 
and myosin-IIA in mammalian cells) has been analyzed. Our 
preliminary study indicates that Myp2, the other myosin-II in 
fission yeast, is immobile during cytokinesis (unpublished data). 
In mammalian cells, isoform-specific myosin-II dynamics have 
been observed in the context of cell migration (Sandquist and 
Means, 2008). It is possible that different isoforms of myosin-II 
are optimized for different functions during cytokinesis. For ex-
ample, the immobile myosin-IIs, such as Myo1 in budding yeast 
or Myp2 in fission yeast, may have evolved to efficiently coor-
dinate AMR constriction with PS formation (or localized ECM 
remodeling in animal cells) during cytokinesis, whereas the fast 
turnover myosin-IIs, such as Myo2 in fission yeast, may have 
evolved to mainly drive PM ingression through force produc-
tion. Thus, it will be very informative to investigate whether 
and why different isoforms of myosin-II in a given organism 
display distinct dynamics during cytokinesis.

Regulation of myosin-II dynamics during cytokinesis re-
mains poorly understood. In this study, we show that actin fila-
ments, motor domain, and light chain (ELC and RLC) binding 
sites in the head domain are largely dispensable for the estab-
lishment of the Myo1 immobility during cytokinesis. In con-
trast, Myo1 tail, especially a 105-aa region within the putative 
assembly domain (Fang et al., 2010), is required for this pro-
cess. Thus, we speculate that Myo1 might form bipolar fila-
ments during cytokinesis, which accounts for its immobility as 
well as maximal maintenance at the division site. Indeed, cell 
cycle–regulated filament assembly is associated with myosin-II 

Figure 8. The immobility of Chs2 and Hof1 depends on a small region near the C-terminal end of Myo1. (A and B) Chs2 and Hof1 become mobile at the 
division site during cytokinesis in myo1-(AA1798Stop) cells. Chs2-GFP in strain YEF6771 (myo1-(AA1798Stop) CHS2-GFP CDC3-RFP; A) and Hof1-GFP 
in strain YEF6769 (myo1-(AA1798Stop) HOF1-GFP CDC3-RFP; B) were analyzed by FRAP during cytokinesis. Arrowheads denote bleaching events. Solid 
and dashed lines indicate the intensity measurements for the unbleached and bleached areas, respectively.
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Construction of plasmids and yeast strains
All primers were purchased from Integrated DNA Technologies. Sequenc-
ing of constructs was performed at the DNA Sequencing Facility, Univer-
sity of Pennsylvania. Plasmid YIp128-CDC3-mCherry (integrative, LEU2) 
carries N-terminally mCherry-tagged CDC3 under the control of its own 
promoter (Gao et al., 2007). Plasmid YIp204-CDC3-mCherry (integrative, 
TRP1) was constructed by subcloning a 5.3-kb SalI–EcoRI fragment carry-
ing mCherry-CDC3 from YIp128-CDC3-mCherry into YIpalc204 (Gietz 
and Sugino, 1988). Plasmid pRS316-MYO1-mCherry (CEN, URA3) car-
ries C-terminally mCherry-tagged MYO1 under the control of its own pro-
moter (Fang et al., 2010). Plasmids pUG34-MLC1 (CEN, HIS3) and 
pUG35-IQG1 (CEN, URA3) carry N-terminally GFP-tagged MLC1 and 
C-terminally GFP-tagged IQG1 under the control of the MET25 promoter, 
respectively (provided by A. Ragnini-Wilson, Tor Vergata University of 
Rome, Rome, Italy; Wagner et al., 2002). Plasmid pUG23-BNR1 (CEN, 
HIS3) was constructed by gap repairing the BNR1 ORF into EcoRI-
 digested pUG23 (supplied by J.H. Hegemann, Heinrich-Heine-Universität 
Düsseldorf, Düsseldorf, Germany), resulting in C-terminally GFP-tagged 
BNR1 under the control of the MET25 promoter. Plasmid YEp13-BNI1-GFP 
(2, LEU2), carrying C-terminally GFP-tagged BNI1 under the control of its 
own promoter, was constructed by a PCR-based method (Longtine et al., 
1998). The PCR products were generated using the plasmid pFA6a-GFP-
KanMX6 (Longtine et al., 1998) as the template DNA and a pair of prim-
ers composed of sequences flanking the stop codon of BNI1 and then 
transformed into a yeast strain carrying the plasmid YEp13-BNI1, which 
was isolated from a YEp13-based genomic library. Plasmids NRB884 
(integrative, URA3) and pG1331 (integrative, TRP1) carry the 3 region 
of EXO84 and TPM2 with a GFP inserted in frame after their last codon, 
respectively (W. Guo, University of Pennsylvania, Philadelphia, PA). 
These plasmids were digested with BglII and integrated at the EXO84 and 
TPM2 loci, respectively.

Diploid strains carrying a specific truncation allele of MYO1 were 
constructed as follows. Plasmid pRS316-N-MYO1-GFP, which carries an 
N-terminally GFP-tagged MYO1 (GFP inserted immediately after the start 

that Chs2, after its full delivery to the division site, is immo-
bilized onto myosin-II for PS formation. This strongly supports 
the hypothesis that the AMR guides PS formation in yeast (or 
localized ECM remodeling in animal cells) during cytokinesis 
(Fang et al., 2010). Like Myo1, proteins involved in PS forma-
tion or its coordination with the AMR, such as ELC, IQGAP,  
F-BAR, and Inn1, except Cyk3, are immobile during cytokinesis 
regardless of their dynamic state early in the cell cycle.

Taking the advantage of yeast genetics and combining it 
with FRAP analysis, we found that the immobility of all other 
cytokinesis proteins depends on Myo1, but Myo1 immobility 
does not depend on other proteins. These findings and the previ-
ous observation that Myo1 is required for actin ring assembly 
(Bi et al., 1998) suggest that Myo1 plays a scaffolding role dur-
ing cytokinesis. This novel role of Myo1 may define a general 
principle for the assembly of a division machine in other sys-
tems, as the core components and the mechanisms of cytokine-
sis are conserved from yeast to humans.

Materials and methods
Strains and growth conditions
Yeast strains used in this study are listed in Table 1. Standard culture media 
and genetic methods were used throughout this study (Guthrie and Fink, 
1991). For LatA experiments, cells were grown in synthetic complete (SC) 
media at 23°C to exponential phase and then treated with 200 µM LatA 
(Wako Chemicals USA) or DMSO (solvent in which LatA was dissolved) for 
10 min before being subjected to time-lapse and FRAP analysis.

Figure 9. Localization and dynamics of cyto-
kinesis proteins during the yeast cell cycle. 
Straight bars indicate the duration of the cyto-
kinesis proteins at the mother–bud neck during 
the cell cycle. Green bars indicate rapid recov-
ery caused by cytosol–neck exchange or lat-
eral movement within the ring structure. Dark 
green bars (for Bnr1 and Hof1 before cytoki-
nesis) indicate less recovery. Black gradient 
bars indicate near-immobile behaviors. Black 
bars indicate immobility. Vertical dashed lines 
indicate the onset of anaphase and telophase, 
respectively. The generic names of yeast pro-
teins are highlighted in red in parentheses.



283Dynamics and scaffolding role of Myo1 in cytokinesis • Wloka et al.

Live-cell imaging and quantitative analysis
For all the FRAP and FLIP experiments, cells were grown at 23°C to expo-
nential phase in SC media with selection for the presence of specific plas-
mids carried in the yeast strain. Cells were concentrated by centrifugation, 
spotted on SC-dropout media containing 2% agarose, and sealed with nail 
polish. Images were acquired at 23°C on a spinning-disk confocal micro-
scope equipped with a scanhead (CSU10; Yokogawa Corporation of 
America) combined with a microscope (IX71; Olympus) and a 100× ob-
jective (1.4 NA, Plan S-Apochromat oil immersion; Olympus). Acquisition 
and hardware were controlled by MetaMorph version 7.7 (Molecular 
Devices). An electron multiplying charge-coupled device camera (model 
C9100-13; ImagEM; Hamamatsu Photonics) was used for capture. Diode 
lasers for excitation (488 nm for GFP and 561 nm for mCherry/RFP) were 
housed in a launch constructed by Spectral Applied Research. FRAP was 
performed using a computer-controlled ablation system (MicroPoint; Pho-
tonic Instruments) consisting of a nitrogen-pumped dye laser (wavelength of 
435 nm) controlled by MetaMorph. Images were taken every 1 or 3 s (no z 
stack) or 10–30 s (with a z stack consisting of 11 × 0.3–µm steps). Whenever 
feasible, a maximum projection (as the best adaptation to cell movement) 
was created with MetaMorph version 7.7, and quantification was performed 
with ImageJ (National Institutes of Health), drawing a respective polygon 
on the region of interest to yield the integrated density for the region. This 
integrated density was used in Prism Version 5 (GraphPad Software) to 

codon; Caviston et al., 2003), was digested with ClaI and SalI and then 
transformed into Masa1243 (a myo1::URA3-KanMX6 [pUG23-MYO1]; 
Fang et al., 2010). After a few selective steps (Fang et al., 2010), a hap-
loid strain (Masa1284) carrying the GFP-tagged MYO1 allele in precise 
replacement of the endogenous MYO1 was generated. PCR products that 
had been amplified from pFA6a-KanMX6 using pairs of F3 and R1 primers 
(Longtine et al., 1998) were transformed into Masa1284 to generate hap-
loid strains carrying truncated alleles of MYO1 that were marked with 
KanMX6. F3 primers consist of sequences upstream of the desired trun-
cation site (codons 1,483, 1,535, 1,633, 1,729, 1,798, or 1,903) in 
MYO1, including a stop codon. The haploid strains were crossed with a 
wild-type strain of opposite mating type to yield diploid strains, which were 
then sporulated, and tetrads were dissected to select for haploid strains of 
opposite mating types carrying a specific truncation allele of MYO1 (GFP-
myo1*:KanMX6). These haploid strains were then crossed to generate 
diploid strains homozygous for a specific truncation allele. Except for strain 
YEF6771 in which CHS2-GFP:KanMX6 was PCR-amplified from the tem-
plate plasmid pFA6a-GFP-KanMX6 (Longtine et al., 1998), all other yeast 
strains were made by transferring gene deletions or tagged alleles of genes 
from one strain to another using PCR-based approach coupled with stan-
dard yeast genetics. All strains carrying CDC3-RFP were constructed by di-
gesting plasmid YIp128-CDC3-mCherry or YIp204-CDC3-mCherry with 
BglII and integrating it at the CDC3 locus of the respective strains.

Table 1. Yeast strains used in this study

Strain Genotype Reference or source

YEF473 a/ his3/his3 leu2/leu2 lys2/lys2 trp1/trp1 ura3/ura3 Bi and Pringle, 1996
YEF473A a his3 leu2 lys2 trp1 ura3 Bi and Pringle, 1996
YEF473B  his3 leu2 lys2 trp1 ura3 Bi and Pringle, 1996
YEF5804 As YEF473A, except CDC3-mCherry:LEU2 This study
YEF5862 As YEF5804, except EXO84-GFP:URA3 This study
YEF5874 As YEF5804, except CHS2-GFP:HIS3 This study
YEF5986 As YEF5804, except MYO2-ARG-GFP:HIS3 This study
XDY286 As YEF473A, except MYO1-GFP CDC3-mCherry:LEU2 Fang et al., 2010
XDY288 As YEF473A, except myo1-Tail-GFP CDC3-mCherry:LEU2 Fang et al., 2010
YEF6001 As YEF5986, except (pRS316-MYO1-mCherry) This study
YEF6036 As XDY286, except NUP57-mCherry:His3MX6 This study
YEF6065 a ade2-1 ura3-52 his3 leu2-3, 112, trp1-1 can1-100 CDC3-mCherry:LEU2 (pUG34-MLC1) This study
YEF6069 As YEF473A, except MLC2-GFP:KanMX6 CDC3-mCherry:LEU2 This study
YEF6116 As YEF473, except bni1::HIS3/bni1::HIS3 MYO1-GFP:KanMX6/MYO1-GFP:KanMX6  

CDC3-mCherry:LEU2/CDC3
This study

YEF6130 As YEF473, except CYK3-GFP:KanMX6/CYK3-GFP:KanMX6 CDC3-mCherry:LEU2/CDC3 This study
YEF6131 As YEF473, except HOF1-GFP:KanMX6/HOF1-GFP:KanMX6 CDC3-mCherry:LEU2/CDC3 This study
YEF6134 As YEF473, except CDC3-mCherry:TRP1/CDC3 (YEp13-BNI1-GFP) This study
YEF6135 As YEF473, except CDC3-mCherry:LEU2/CDC3 (pUG23-BNR1) This study
YEF6138 As YEF473, except INN1-GFP:KanMX6/INN1-GFP:KanMX6 CDC3-mCherry:LEU2/CDC3 This study
YEF6140 As YEF473, except CDC3-mCherry:LEU2/CDC3 (pUG35-IQG1) This study
YEF6197 As YEF473A, except TPM2-GFP:TRP1 CDC3-mCherry:LEU2 This study
YEF6230 As YEF473A, except inn1::KanMX6 MYO1-GFP:His3MX6 CDC3- mCherry:LEU2 This study
YEF6273 As YEF473A, except chs2::His3MX6 MYO1-GFP:KanMX6 CDC3- mCherry:TRP1 This study
YEF6336 As YEF473A, except myo1::KanMX6 CHS2-GFP:KanMX6 CDC3-mCherry:LEU2 This study
YEF6349 As YEF473A, except myo1::His3MX6 CDC3-mCherry:LEU2 This study
YEF6351 As YEF473A, except myo1::KanMX6 CDC3-mCherry:LEU2 (pUG34-MLC1) This study
YEF6356 As YEF6349, except (pUG35-IQG1) This study
YEF6357 As YEF6349, except INN1-GFP:KanMX6 This study
YEF6358 As YEF6349, except HOF1-GFP:KanMX6 This study
YEF6616 As YEF473, except GFP-myo1-(AA1798Stop):KanMX6/GFP-myo1-(AA1798Stop):KanMX6  

CDC3-mCherry:LEU2/CDC3
This study

YEF6617 As YEF473, except myo1-(AA1903Stop)-GFP/myo1-(AA1903Stop)-GFP  
CDC3-mCherry:LEU2/CDC3

This study

YEF6618 As YEF473, except GFP-MYO1/GFP-MYO1 CDC3-mCherry:LEU2/CDC3 This study
YEF6769 As YEF473B, except myo1-(AA1798Stop):His3MX6 HOF1-GFP:KanMX6 CDC3-mCherry:TRP1 This study
YEF6771 As YEF473B, except myo1-(AA1798Stop):His3MX6 CHS2-GFP:KanMX6 CDC3-mCherry:TRP1 This study
YEF6899 As YEF473A, except CDC3-mCherry:LEU2 BNI5-GFP:KanMX6 This study
YEF6904 As YEF473A, except myo1::His3MX6 CDC3-mCherry:LEU2 BNI5-GFP:KanMX6 This study
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