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DERIVING THE GLS TRANSFORMATION PARAMETER 
IN ELEMENTARY PANEL DATA MODELS 

by Philip N. Jefferson* 

Abstract 

The Generalized Least Squares (GLS) transformation that eliminates serial correlation in the error terms 

is central to a complete understanding of the relationship between the pooled OLS, random effects, and 

fixed effects estimators. A significant hurdle to attainment of that understanding is the calculation of the 

parameter that delivers the desired transformation. This paper derives this critical parameter in the 

benchmark case typically used to introduce these estimators using nothing more than elementary statis 

tics (mean, variance, and covariance) and the quadratic formula. 

"Deriving the GLS transformation that elimi 
nates serial correlation in the error terms requires 

sophisticated matrix algebra." 
?Jeffrey M. Wooldridge (2003) 

I. Introduction 

This paper reconsiders the derivation of the Gen 
eralized Least Squares (GLS) transformation that 
eliminates serial correlation in the error terms in 

elementary panel data models. Such a reconsidera 
tion is warranted because traditional derivations are 

presented at a relatively high level of analytical 
sophistication. This creates a hurdle to a complete 
understanding of the pooled OLS, random effects, 
and fixed effects estimators and the connection 
between them. This is unfortunate because these 
estimators have risen in importance as the avail 

ability and use of panel data sets for testing eco 
nomic hypotheses and policy analysis have dramat 

ically expanded in recent years. 
The approach taken to deriving the GLS trans 

formation in this paper is unabashedly elementary. 
A benchmark case is used to illustrate how the GLS 
transformation parameter can be explicitly derived 

using a restriction on the error covariance. Although 
not perfectly general, this benchmark case is the 
one typically used to introduce the pooled OLS, 
random effects, and fixed effects estimators. A 

value of examining this case is that the derivation 

requires the use of only elementary statistics (mean, 
variance, and covariance) and the quadratic formu 
la. 

Table 1 indicates how this transformation is 
treated in selected econometrics textbooks. As sug 

gested by the comment by Wooldridge above, the 
hurdle is high indeed. For researchers making a first 

approach to these estimators, it appears that one's 

ability to fully appreciate them is bounded by one's 

facility with sophisticated matrix algebra. This 

paper seeks to lower this hurdle. Sections II and III 

present the benchmark model and the problem that 
causes OLS estimation to be inefficient, respective 
ly. Section IV presents a simple scalar-based covari 
ance restriction method for deriving the GLS trans 
formation parameter in the benchmark case. Section 
V concludes. 

II. The Benchmark Model 

The elementary error components model has the 

following structure: 

y = a. + Bx + w. (1) *it i 
~ 

u u v ' 

for / = 2,....,N and t = 2,....,T. In this notation, / is an 

index for cross section units and t is an index for 
time periods. We assume that E(w.) 

= 0, E(w?) 
= 

o2w, and E(w.w.) 
= 0 for t * s. In equation (1), a 
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TABLE 1 
Textbook Treatment of GLS Transformation 

Author(s) Level Treatment Framework Derivation 

Ashenfelter et al. (2003) U Yes, p. 272 Scalar No 
Griffiths et al. (1993) U/G Yes, p. 577 Matrix No 
Gujarati (2003) U/G Yes, p. 649 Scalar No 
Pindyck & Rubinfeld (1998) U/G Yes, p. 254 Scalar No 
Ramanathan (2002) U Yes, p. 481 Scalar No 

Wooldridge (2003) U/G Yes, p. 470 Scalar No 
Green (2003) G Yes, p. 295 Matrix Yes 
Johnston & Dinardo (1997) G Yes, p. 392 Matrix Yes 
Judge et al. (1985) G Yes, p. 524 Matrix Yes 
Kmenta(1986) G/U Yes, p. 627 Matrix Yes 
Ruud (2000) G Yes, p. 638 Matrix Yes 
Wooldridge (2002)_G_Yes, p. 286_Matrix_Yes 
Notes: U = Undergraduate, G = Graduate 

permits differences across cross section units. 
These differences may have a random component 
thus 

a = a + u. (2) 

where E(u) 
= 0, E(u2) 

= 
a\, and E(uu) = 0 for i * 

j. Substituting (2) into (1) yields 

y = a + Bjc + u + w = a + Bjc. + e. (3) 'it 
~ 

u i u 
~ 

it a v 7 

where the composite error is e.t 
= u. + w.t and by 

assumption E(uw.) 
= 0, E(ux.) 

= 0, and E(w.x.) 
= 0, 

for all i,t. 
The interpretation of the error components is that 

u represents em individual effect and that w repre 
sents unsystematic variation across time and cross 
section unit. Many important issues surrounding 
parameter estimation and interpretation using panel 
data can be considered in the benchmark case with 
Af of arbitrary size and T - 2. In fact, it is not 
uncommon for the benchmark case to serve as the 

gateway to analysis of the pooled OLS, random 

effects, and fixed effects estimators.1 Considerable 

emphasis is placed on the benchmark case below. 

III. The Problem 

It is well-known that OLS estimation of the para 
meters in equation (3) is inefficient. The source of 
the problem is the individual effect that induces cor 

relation in the error terms within each cross section 
unit. In the benchmark case, this is easy to see. For 
individual i the errors are 8, = u + w., and e_ = u. + i\ i il i2 < 

w.2. Thus, the covariance of the error terms is 

Cov(eiX,ea) 
= 

ol (4) 

An analogous result holds for each cross section 
unit. Thus, a generalized least squares (GLS) proce 
dure that explicitly takes this covariance structure 
into account is needed. 

IV. Deriving Two Solutions 

A more transparent derivation of the GLS trans 

formation parameter in elementary panel data mod 
els requires some form of differencing for solutions 
to the problem. Intuition for this conclusion may be 
drawn from a more familiar but different problem: 
first order autocorrelated error terms. A common 

prescription for dealing with first order autocorrela 
tion is generalized differencing. That prescription is 
based on knowledge of the first order autocorrela 
tion parameter, p, that allows the researcher to 
uncover the underlying iid disturbance. The trans 

formed model then paves the way for the assertion 

that the conditions of the Gauss-Markov theorem 

hold.2 

Analogous to the case of first order autocorrela 

tion, a non-zero error covariance in equation (4) is 

problematic for OLS estimation in the panel data 
case. Therefore, it seems intuitive to appeal to some 

form of differencing for possible solutions. Consid 
er the following transformation of the errors for 
cross section unit /, 

e'a 
= 

ea-te (5) 
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where 9 is a constant (the GLS transformation para 
meter) to be determined and z is a random variable 
to be determined.3 If we could extract the individual 

effect from the original composite error terms, then 

it might be possible to eliminate the within unit 
autocorrelation. Equation (3) suggests two possible 
choices for z. 

The first choice for z is taken directly from equa 
tion (3). Since u. is the source of the problem, it 

might seem reasonable to set z = u. in equations (5). 
Given that 6 is unknown, however, it is not imme 

diately clear how this selection solves the problem. 
Fortunately, 9 is a free parameter. Thus, we may 
choose it in an appropriate way. Consider the 

restriction: 

Cov(E\x,e*a) 
= E [(efl 

- 
Qz)(ea 

- 
9z)] = 0 (6) 

where z = u.. In the appendix, it is shown that the 
covariance restriction in equation (6) holds if 

92 - 29 + 1 = 0 (7) 

An appropriate choice of 9 is given by the quadrat 
ic formula: 9=1. Since equation (3) holds for all t, 

plugging 9=1 into equations (5) with z = u. sug 

gests that first differencing is one solution to the 

problem. The covariance restriction method easily 

reproduces the standard solution to the within auto 

correlation problem in the benchmark case. 

The second choice for z is also taken from equa 
tion (3). An alternative way of isolating the impact 
of within the unit factors is by averaging the error 
term over time. Thus, set z = u. + w where w. = 271 ' ii i M 
w. IT and w. = 27u.l T. Notice that Var(u + w) = 

it i r=l i ^ t r 

al + (?l I T)m Now, reconsider the covariance 
restriction in equation (6). Again, 9 is a free para 

meter. In this alternative case, it is shown in the 

appendix that the covariance restriction in equation 
(6) holds if 

(f)92-2(^)9+ o2 
= 0 (8) 

where a2 = 
To] + a2. Of course, the quadratic for 

mula yields two solutions for 9 in equation (8). 
They are 

a 
9 = i ? n?*? (9) 

V To2 + a2 v } 

In applied work, the root 9 is preferred as its range 
is [0,1]. This property of 9 gives it a natural inter 

pretation as a weighting parameter. Plugging 9 into 

equations (5) with z = u. + vv. suggests that general 
ized differencing is an alternative solution to the 

problem. In equations (5), 8 answers the question, 
How much weight should be placed on z in the gen 
eralized differencing procedure? Equation (9) indi 
cates that the answer to this question depends on the 

variability of the individual effect, a2 relative to the 

variability of unsystematic error, a2. The parameter 
9 in equation (9) is the GLS transformation para 
meter that eliminates serial correlation in the error 

terms in panel data models. 
The parameter 0 is central to understanding the 

relationship between the pooled OLS, random 

effects, and fixed effects estimators. As several of 
the authors cited in table 1 note, either estimator 
obtains depending on the value 8 takes on in its 

range. There are three cases: 6 = 0, 6 = 1, and 0 < 

6 < 1. First, 8=0 can occur only if a2 = 0. In equa 
tions (5), 9=0 implies that no weight is placed on 
z. Thus, the transformed errors are the same as the 

composite errors. Since Cov (e.x, ea) 
= a* = 0, there 

is no autocorrelation and application of the pooled 
OLS estimator is appropriate. Second, 8=1 can 
occur only if c2w 

= 0. In equations (5), 8=1 implies 
that full weight is placed on z. Thus, the individual 

(fixed) effect, embedded in the composite errors 

and presumed to be correlated with the regressors, 
is totally removed from the transformed errors. This 
is what the fixed effect estimator does. Finally, 0 < 

8 < 1 can occur when both a2 * 0 and a2 * 0. In u w 

equations (5), 0 < 8 < 1 implies that partial weight 
is placed on z. This partial weighting combined 
with the additional assumption that the individual 
effect is uncorrelated with the regressors yields the 
random effects estimator.4 

V. Conclusion 

The scalar-based covariance restriction method 
of deriving the GLS transformation parameter in 
the benchmark case is computationally direct and 
intuitive. It requires nothing more than knowledge 
of elementary statistics (mean, variance, and 

covariance) and the quadratic formula. Drawing on 
the intuition from a more familiar case, it relies on 
the principle of differencing the data in the search 
for an appropriate GLS estimator. Most important 
ly, however, it opens up the possibility that the 

pooled OLS, random effects, and fixed effects esti 
mators can be understood at a deeper level by 
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researchers making their first approach to this 

important class of estimators. 

Appendix 

Derivation of Equation (7). With z = u., the covari 
ance of the transformed errors is 

Cov(e]x, e;2) 
= 

E[(eix 
- 

Qu)(ea 
- 

8w.)] 

= 
?[(?. + 

wj.1-eMj.)(W/ 
+ 

w(2-8M/)] 

= 
E[u2 + w.vv + w.vv + 

wltwi2-Q(2u2i + uwll + uwa) + 

e2?2] 

= a2-2a26 + a202 M H ? 

Applying the covariance restriction in equation (6) 

yields equation (7). 

Derivation of Equation (8). Let z = u. + w., T = 2, 
anda2/r = a2 + (oyr). 
The covariance of the transformed errors is 

Cov(e]x, e;2) 
= ? [en 

- 
8(w + w,)][ea 

- 
8(w. + vv.)] 

= E [(w + wfl) 
- 

8(w + w,)][(ii, + w/2) 
- 

8(w. + vv.)] 

= E [U2 + W.VV + W H> + VV H> - 
L i i il i i2 il j2 

8(2m2 + 2w.? + w.w., + w.w., + WW., v i ii i il i il i i2 

+ vv vv ) + 82(w2 + 2w.u. + vv2)] / il' v i ii rJ 

= a2 - 2(o2 + a2/ 7)9 + (a2 + a2/ r)02 

= 
a:-2(f)e+(f)e. 

Applying the covariance restriction in equation (6) 

yields equation (8). 

Notes 

1. Alternative assumptions about the correlation 

between the errors and the regressors determine 
which estimator is under consideration. 

2. Of course, special treatment of the first obser 

vation is required. 

3. The ordering of the observations within the 
cross section unit is immaterial in the panel 
data setting. Thus, all of the observations 
should be given the same treatment, unlike the 
first order autocorrelation case, by virtue of 

symmetry. 
4. In practice, 9 will typically lie in the interior of 

its range and the estimator employed will be 
determined by the explicit assumptions about 
the correlation between the errors and the 

regressors made by the researcher. 
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