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Louis M. Friedler 
Arcadia University, Glenside, PA 19038 

May 16, 2003 

Abstract 

Domination graphs of directed graphs have been defined and studied 
in a series of papers by Fisher, Lundgren, Guichard, Merz, and Reid. A 
tie in a tournament may be represented as a double arc in the tournament. 
In this paper we examine domination graphs of tournaments, tournaments 
with double arcs, and more general digraphs. 

Keywords: domination graph, tournament, underlying graph 

1 Introduction 

Let D be a digraph with vertex set V(D) and arc set A(D). If (x,y) E A(D), 
we say that x beats y or write x -> y. Vertices x and y are said to dominate 
a digraph if for all vertices z # x, y, either x -> z or y -> z. If D is a 
digraph, the domination graph of D, denoted dam(D), is the graph G with 
vertex set V(D) and an edge between each pair of vertices that dominate D. 
A directed graph with exactly one arc between each pair of vertices in D is a 
tournament. Fisher, Lundgren et al have completely characterized domination 
graphs of tournaments [9], [5), [6]. They have also obtained results on the 
domination graphs of arbitrary digraphs [8]. 

In section 2 of this paper we characterize those digraphs D whose domi­
nation graph is isomorphic to the (undirected) graph underlying D. We also 
characterize those connected graphs that are the domination graph of a "proper 
oriented graph" (defined below.) In section 3, we look at domination graphs of 
tournaments which may have double arcs. In particular, we prove that if T is 
a tournament with double arcs and dom(T) is isomorphic to Kn, then T must 
have at least G) -n double arcs. We also show that every n-cyclc with n even is 
an induced subgraph of a domination graph of a tournament with double arcs. 
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The domination graph of a tournament was introduced by Fisher, Lundgren, 
Merz, and Reid [9] who extended the concept to the domination graph of a 
digraph [8] and continued the work in additional papers with Guichard ([5] 
and [6].) Their work was originally motivated by the observation that the 
domination graph of a tournament is the complement of the competition graph 
of its reversal. The competition graph of a digraph Dis the graph with vertex 
set V{D) and an edge between vertices x and y if there is a vertex z -:f x, y such 
that both x and y beat z in D. Competition graphs arise naturally when a 
digraph models a food web, where an arc from species x to species y means x 
preys on y, so that an edge between x and y in the competition graph means 
that x and y compete for the same prey. Results on domination graphs thus 
increase the understanding of competition graphs. See the survey article by 
Lundgren [11] for more on competition graphs. 

2 Domination graphs of proper oriented graphs 

Following the terminology of Fishcr,et al [8], a directed graph with no loops 
or multiple edges will be called an oriented graph. An oriented graph on n 
vertices with fewer than G) edges will be called a proper oriented graph. WP 
first characterize those oriented graphs whose underlying graph is isomorphic to 
the domination graph. 

Notation 1 D will represent an oriented graph, UG(D), the underlying undi­
rected graph, and dom(D) the domination graph of D. When UG(D) is isomor­
phic to dom(D), then V(dom(D)) will represent the domination graph with the 
orientation inherited from D. A directed star is a directed graph on n vertices 
and n edges in which one vertex beats all others. For a vertex v E D, 0( v) will 
represent the set of all vertices x such that v-> x and I(v) the set of all vertices 
x such that x-> v. 

Example 2 Let D have the vertices a, b, c with a _, b and c isolated. Then the 
domination graph of D has an edge between a and c and b is isolated. Clearly, 
the domination graph is isomorphic to UG(D). To simplify notation below, we 
will label the vertices of dom(D) as A, B, C, where the isomorphism takes a to 
A, b to B, and c to C and the orientation in V(dorn(D)) is A_, B. 

Lemma 3 If UG(D) is isomorphic to dom(D) then in D we cannot have ve1·­
tices a, b,and c with a -> b and c __, b. 

Proof. Since UG(D) is isomorphic to dorn(D), Dis isomorphic to 'D(dom(D) ). 
If a and _c b~th beat b, then there are corresponding edges {A, B} and { C, B} in 
the domrnat10n graph, and so A-> Band C-> Bin D(dom(D)) and both pairs 
A,B and C, f! dominate D(dam(D)). But since A and B dominate 'D(dom(D)) 
and C-> B, 1t follows that A -> C. Similarly we show that C _, A. Thus, it is 
not possible that both a and c beat b in D. • 
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Lemma 4 If D is an oriented graph with n 2: 4 vertices and UG(D) i.9 isomor­
phic to dom(D), then D has no isolated vertices or n isolated vertices. 

Proof. If D has exactly one isolated vertex v, then the only pair that can 
possibly dominate D is a pair { x, v }, where x -1 z for all other vertices z. But 
then there can be at most one edge in dom(D), so at most one edge in D. This 
is not possible since n 2: 4. If D has two or more isolated vertices, then there 
can be no edges in dom(D), so none in D. • 

Theorem 5 Let D be an oriented graph on n 2: 3 vertices. Then UG(D) is 
isomorphic to dom(D) iff (n = 3 and D does not contain one vertex which is 
beaten by the other two) or {n 2: 4 and D is a directed star or has n isolated 
vertices.) 

Proof. If n = 3, then there are five non-isomorphic directed graphs on 
three vertices which are not the forbidden type; each one has its underlying 
graph isomorphic to its domination graph. The two non-isomorphic forbidden 
directed graphs do not have underlying graphs isomorphic to the domination 
graph. If n 2: 4, it is straight-forward to show that the two specified types of 
directed graphs have underlying graphs isomorphic to the domination graph. 
For the converse, assume D is an oriented graph with at least four vertices and 
that dom(D) is graph isomorphic to UG(D). It follows from Lemma 4, that 
D has all isolated vertices or no isolated vertices. Assume D has no isolated 
vertices and k is the number of weak components of D, each of which has at 
least one edge. Then since dom(D) must have at least k edges and no isolated 
vertices, k must be less than or equal to two. If k = 2, then dom(D) has at most 
one edge while D has at least two edges. Thus, there is exactly one component 
in D and so in dom(D). Pick a vertex v in D with IO(v)I 2: 1. By Lemma 3, 
II(v)I ~ 1. If II(v)I = 1, then there are vertices x and y with x _, v -1 y. If 
II(v)I = 0, then either v -1 x for every vertex x E D, or there are vertices x 
and y in D with v _, x -1 y. Thus, in either case, D is either a star or has a 
path, which we indicate as v -1 x--> y. Assume Dis not a star. Since UG(D) is 
isomorphic to dom(D), in domD there is a corresponding path V-X -Y which 
can be directed V -1 X -1 Y. Since { X, Y} must be a dominating edge, we must 
have have y -1 v in D. Since n 2: 4 and we have only one component, there 
must be another vertex z in D with a directed edge connecting it to this 3-cycle. 
By Lemma 3, it must be directed outward, so assume x -1 z. But then by the 
same argument we used above, we must also have z _, v. But this contradicts 
lemma 3 since we also have y -1 v. It follows that if D has no isolated vertices, 
it must be a directed star. • 

We will now classify all connected graphs which can occur as the domination 
graph of a proper oriented graph. The next lemma is presented without proof. 

Lemma 6 Let D be a directed graph. Then O{v) is an independent set in 
dom(D) for every vertex v. 

Definition 7 If n is odd, Un is the tournament on the vertices 0, ... , n - 1 with 
directed edges (i,j) iff j - i is positive and odd or negative and even. 
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Lemma 8 (9/ Let T be an n-tournament, where n is odd. Then Cn is a subgraph 
of dom(T) iff T is isomorphic to U11 • 

Lemma 9 (8/ If D is an oriented graph, then dom(D) is either an odd cycle 
with or without isolated and/or pendant vertices, or a forest of cat.e171illars. 

Theorem 10 If H is a connected graph, then H is the domination gruph of 
some proper oriented graph iff H is a caterpillar or a spiked odd cycle with at 
least two spikes on some vertex. 

Proof. To prove necessity, notice that Fisher and Lundgren et al. [8] have 
shown that the domination graph of an oriented graph is a caterpillar or a 
spiked odd cycle. It remains to show that a spiked odd cycle with at most 
one pendant vertex at each vertex in the odd cycle cannot be the domination 
graph of a proper oriented graph, although it must be the domination graph of 
a tournament. 

If C,. is an odd cycle and is equal to dam(D) for some oriented graph D, 
then by adding edges to D arbitrarily we find a tournament T such that, C,. 
= dom(T). But then T = Un by Lemma 8, and since no subset of U11 will 
generate C11 , it follows that D =Un. Then if C11 is a subset of dom(D) for an 
oriented graph D, Un C D. Now assume fl= dom(D) contains C,., where n is 
odd, and has at most one spike on each vertex of C11 • We will show D must be 
a tournament. Label the vertices of Cn by 0, 1, ... , n -1. Fix vertex i. If there is 
a spike at vertex i, we label it Xj. Since i -1 _, i in Un, and {i,xi} dominates, 
we cannot have i - 1 -+ xi. But then, since { i - l, i} dominates, we must have 
i --+ Xi. Let k be another vertex in Cn. If k _, i then since { i, xi} dominate, 
Xi -+ k. If i -+ k, then k - 1 (mod n) must beat k (by the definition of U11 ), and 
since { k -· 1, k} dominate, k - 1 _, i. But then since { k, k - 1} dominate, we 
must have k --+ x;. That is, there must be directed edges in D between Xi and 
every vertex k in en. 

Now say vertices i and j in Cn each have spikes Xi and x1. Assume i _, j.Then 
since j, Xj dominate, we must have Xj _, i, but then since i, x; also dominate, 
Xi -+ xi. That is, there are edges in D between each pair of spikes. It follows 
that D must be a tournament. 

For the sufficiency, let H be a caterpillar. By Theorem 5.2 of [8, Theorem 
5.2], H is the domination graph of an oriented graph. The proof of that theorem 
shows that H is in fact the domination graph of a proper oriented graph. Now 
let H be a spiked odd cycle with at at least two spikc>,S on at least one vertex 
of the cycle. Pick a subgraph H' of fl which consists of the cycle and al most 
one of the spikes (x;) at each vertex i. Then H' is the domination graph of a 
tournament T. Now we add the other vertices to T. If y, is another spike at 
vertex i then, for each other vertex v in Cn define Yi _, v in T iff x; _, v and 
for v a spike at j f= i, define Yi _, v iff x; _, Xj. We do not add edgc>,S between 
spikes on the same vertex. Then the resulting oriented graph is proper and has 
H as its domination graph. • 

Example 11 A triangle is the domination graph of a tournament but not the 
domination graph of a proper oriented graph. A gmph with one edge and one 
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isolated vertex is the domination graph of a proper oriented graph but not the 
domination graph of any tournament. A four cycle is the domination graph 
neither of a tournament nor of a proper oriented graph. A caterpillar with 
exactly two pendant vertices on one end is the domination graph of a proper 
oriented graph but not the domination graph of any tournament. {This last 
result follows from Theorem 5 of {7}.) 

3 Domination graphs of tournaments with dou­
ble arcs 

If a tournament, T, on n vertices has all double arcs, then dam(T) = Kn. We 
pose the following problem. 

For each positive integer n, find d(n), the smallest number of double edges in 
any tournament, T, on n vertices for which dom(T) =Kn, the complete graph 
on n vertices. d(n) is characterized in the theorem below. 

The authors learned in April 2002 that Theorem 12 was obtained indepen­
dently by Factor and Factor. Their result has now appeared in [4]. Related 
work has also appeared in [3] and [12]. 

Theorem 12 For n 2".. 3, d(n) = G) - n 

Proof. Given the positive integer n, construct a tournament T as follows. 
Label the vertices 0, 1, ... , n - 1. Direct i-+ i + l(mod n). for each i. Construct 
double arcs hetween each other pair. (Of course, for n = 3 there are no other 
pairs.) Then there are G) - n double arcs. If i, j is any pair of vertices, 
consider the vertex k. If k = i + l(mod n) or k = j + l(mod n) then i __, k or 
j -• k. Otherwise, at least one of { i, k} or {j, k} is a double arc and so either 
i -+ k or j -+ k. We conclude that { i, j} dominates T. Since this is true for 
every pair, dom(T) =Kn. Thus, d(n) ~ G) - n. 

To show that this number is actually the minimum, let T be a tournament 
on n vertices with dom(T) =Kn and assume T has at least n single edges. We 
show that T has exactly n single arcs, and G) - n double arcs. That is, for any 
tournament whose domination graph is Kn the number of single arcs is at most 
n so that the number of double arcs is at least G) -n and hence, d(n) :;;: (;)-n. 

Consider the subgraph S of T consisting of n of the single arcs in T. Observe 
that we cannot have vertices a, b, c with a -+ b and a -+ c in S. (Since every 
pair dominates T, b,c must dominate, but neither beats a.) Since there are n 
vertices in T, each of which can have outdegree in S of at most one, and the 
sum of these outdcgrees must equal n (the number of edges in S), it follows that 
each of the n verticC'-S of T is the tail of exactly one arc from S. 

Let v and w be vertices in T and assume that { v, w} is not an edge in S. 
We claim that { v, w} is a double arc in T. Since v and w are tails of single arcs 
in S, there arc vertices v* and w* (perhaps equal) with v -+ v* and w __, w•. 
Since every pair in T must dominate T, {v, w*} dominates, so that v __,win T. 
Similarly, { w, v'} dominates so that w-+ v in T, and hence, { v, w} is a double 
arc. It follows that the number of single arcs is exactly n. • 
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Example 13 Given the positive integer n, the tournament which has the min­
imal number of double arcs need not be unique. Further, the components of the 
subgraph of single arcs may not consist of disjoint cycles. 

Let T 1 be the tournament on n = 7 vertices which has single arr.s on a seven 
cycle and double arcs everywhere else. We define a second tournament, T2, on 
seven vertices as follows. We have two components. The first has a directed 
three-cycle. The second has a directed three cycle plus one arc pendant at a 
vertex of the three cycle. That arc is oriented toward the cycle. Make all other 
arcs in T2 double. Then it can be verified that dom(T1) = dom(T2) = K 7. 

Remark 14 The main open problem in this area is to completely characterize 
those graphs which are the domination graphs of tournaments with double arcs. 
We have only partial results and a conjecture in this direction. We begin with 
n-cycles. Every n-cycle with n-odd is the domination graph of a tournament 
(with single arcs) (Lemma 8) and so is the domination graph of a tournament 
which may have double arcs. However, an even n-cycle cannot be a subgraph of a 
domination graph of tournament {(9}, Lemma 2.1). In contrast, for tournaments 
with double arcs we have Corollary 16 below. 

Theorem 15 Let G be a graph with n vertices, where is n odd. If G contains 
an n-cycle and exactly n+ 1 edges, G is a domination graph of a tournamrnl 
with double arcs. 

~. Proof. Assume the cycle is labeled 0, 1, ... , n - 1 and let {O,j} be the extra 
edge in G. We can assume j S (n + 1)/2 (or relabel the cycle.) We construct 
a tournament T so that G = dom(T). First, put the single arcs of Un in T, so 
that the n-cycle of G is in dom(T) (Lemma 8). 

Case 1. j S (n + 1)/2, j odd 
Add arcs 0 _, 4, ... , j-1 to T (making these arcs double) and also j _, 2. Then 

0-> 4, ... ,j -1, 1,3, ... ,n -2 and j-> 2, j + l,j + 3, ... ,n- 1 (from Un.) 
Thus, the edge {O,j} is in dom(T). We claim there are no extra edges in the 
domination graph. Since we only have added arcs originating at 0, we need 
only check edges containing 0, so consider {O, v} , where v =j:; j, 1, n - 1. If v 
is odd, then {O,v} does not dominate 2, so {O,v} is not in dom(T). Similarly, 
if v is even { 0, v} does not dominate n - 1, so { 0, v} is not in dom(T). Thus, 
G =dom(T). 

Case 2. j S (n + 1)/2 , j even 
Add arcs 0 _, j + 2,j + 4, ... , n - 3 to Also add arc j __, n - 1. Then 

0-->, 1,3, 5, n-2,j +2,j +4, .. .,n -3 and j--> 2,4, .. .,j - 2,j + l,j + 3, ... , n -2. 
Thus, {O,j} dominates G. We claim we have not added any other edges to 
the domination graph. It is sufficient to check edges of the form {O, v} for 
v I= 1, j, or n - 1 and {j,v} for v =/:: 0, j- 1, or j + 1. Consider {O,v} for 
v I= j, or n - 1, v even. Then { 0, v} does not dominate n - 1. Now consider 
{O, v} for v le j, v le 1, v odd. Then for v f j, v does not dominate 2. Now we 
consider edges of the form {j, v} for v =f. 0, j -1, or j + 1, where vis odd. Then, 
if j < v, {j, v} does not dominate v - 1, while if v < j, {j, v} does not dominate 

94 



j - l. Finally, we consider edges of the form {j, v} for v f:- 0, j - 1, or j + 1 
where v is even. Then {j, v} does not dominate l. 

It follows that G = dmn(T). • 

Corollary 16 If n is even, Cn is an induced subgraph of a domination graph 
of a tournament with double arcs on n +I vertices. 

The following is an attractive conjecture. We have been able to prove it only 
for the case n = 5. 

Conjecture 1 7 Let n be an odd integer. If G is a graph on n vertices and 
contains an n-cycle, then G is the domination graph of a tournament which 
may have double arcs. 

We end with a statement of a theorem characterizing those graphs on 5 
vertices which are the domination graphs of tournaments with double arcs. We 
omit the proof. 

Theorem 18 A connected graph on 5 vertices is the domination graph of a 
tournament with double arcs iff it satisfies one of the following: 

(a} contains a 5-cycle; 
{b) is a spiked 4 cycle with one or two diagonals; 
( c) is 3 cycle with two spikes; 
( d} is a star. 

References 

[l] H. H. Cho, F. Doherty, J.R. Lundgren, S. Kim, Domination graphs of 
regular tournaments II, Cong. Numer. 130 (1998), 95-111. 

[2] H. H. Cho, S.-R. Kim, J.R. Lundgren, Domination graphs of regular tour­
naments, Discrete Math., to appear. 

[3] K.A.S. Factor, Domination graphs of compressed tournaments, Cong. Nu­
mer. 157 (2002), 53-78. 

[4] J.D. Factor, K.A.S. Factor, Partial domination graphs of extended tourna­
ments, Cong. Numer. 158 (2002), 119-130. 

[5] D.C. Fisher, J.R. Lundgren, D. Guichard, S.K. Merz, K.B. Reid, Dom­
ination graphs with nontrivial components, Graphs and Combinatorics, 
17(2001), 227-236. 

[6] D.C. Fisher, J.R. Lundgren, D. Guichard, S.K. Merz, K.B. Reid, Domi­
nation graphs of tournaments with isolated vertices, Ars Combinatoria, to 
appear. 

[7] D.C. Fisher, J.R. Lundgren, S.K. Merz, K.B. Reid, Connected Domination 
Graphs of Tournaments, JCMCC 31 (1999), 169-176. 

95 



t.·.· 

[8] D.C. Fisher, J.R. Lundgren, S.K. Merz, K.B. Reid, Domination Graphs of 
Tournaments and Digraphs, Cong. Numer. 108 (1995), 97-107. 

[9] D.C. Fisher, J.R. Lundgren, S.K. Merz, K.B. Reid, The domination and 
competition graphs of a tournament, J. Gmph Theory, 29(1998), 103-110. 

[10] G. Jimenez and J.R. Lundgren, Tournaments which yield connected dom­
ination graphs, Cong. Numer. 131 (1998), 123-133 

[11] J.R. Lundgren, Food webs, competition graphs, competition-common en­
emy graphs, and niche graphs, in Applications of Combinatorics and Graph 
Theory to the Biological and Social Sciences, F.S. Roberts, Ed., Springer­
Verlag (1989). In IMH Volumes in Mathematics and Its Applications, 17. 

[12] P. McKenna, M. Marton, J. Sneddon, New domination conditions for tour­
naments, Australasian J. Comb., to appear. 

96 

I 

..... -.. iiiiiiiiiiiiiiiiliiiiiilll __________ _ 


	Domination Graphs Of Tournaments And Other Digraphs
	Recommended Citation

	758095

