Document Type

Conference Proceeding

Publication Date

2009

Published In

Current Trends In International Fusion Research: Proceedings Of The 7th Symposium

Abstract

Several new experimental results are reported from plasma merging studies at the Swarthmore Spheromak Experiment (SSX) with relevance to collisionless three-dimensional magnetic reconnection in laboratory and space plasmas. First, recent high-resolution velocity measurements of impurity ions using ion Doppler spectroscopy (IDS) show bi-directional outflow jets at 40 km/s (nearly the Alfven speed). The SSX IDS instrument measures with 1 mu s or better time resolution the width and Doppler shift of the C-III impurity (H plasma) 229.7 nm line to determine the temperature and line-averaged flow velocity during spheromak merging events. High flow speeds are corroborated using an in situ Mach probe. Second, ion heating to nearly 10(6) K is observed after reconnection events in a low-density kinetic regime. Transient electron heating is inferred from bursts on a 4-channel soft x-ray array as well as vacuum ultraviolet spectroscopy. Third, the out-of-plane magnetic field and the in-plane Lorentz force in a reconnection volume both show a quadrupolar structure at the ion inertial scale (c/omega(pi)). Time resolved vector magnetic field measurements on a 3D lattice B(r, t)) enables this measurement. Earlier work at SSX has shown that fori-nation of three-dimensional structure at the ion inertial scale is temporally and spatially correlated with the observation of superthermal, super-Alfvenic ions accelerated along the X-line normal to the local 2D plane of reconnection. Each of these measurements will be related to and compared with similar observations in a solar or space context.

Published By

American Institute Of Physics

Editor(s)

E. Panarella and R. Raman

Conference

7th Symposium On Current Trends In International Fusion Research

Conference Dates

March 5-9, 2007

Conference Location

Washington, DC

Comments

This work is freely available courtesy of the American Institute of Physics.

Share

COinS