Document Type

Article

Publication Date

10-22-1999

Published In

Journal Of Chemical Physics

Abstract

We simulate H-2 adsorbed within zeolite Na-A. We use a block Lanczos procedure to generate the first several (9) rotational eigenstates of the molecule, which is modeled as a rigid, quantum rotor with an anisotropic polarizability and quadrupole moment. The rotor interacts with Na cations and O anions; interaction parameters are chosen semiempirically and the truncation of electrostatic fields is handled with a switching function. A Monte Carlo proceedure is used to sample a set of states based on the canonical distribution. Potential energy surfaces, favorable adsorbtion sites, and distributions of barriers to rotation are analyzed. Separation factors for ortho-parahydrogen are calculated; at low temperatures, these are controlled by the ease of rotational tunneling through barriers. (C) 1999 American Institute of Physics.

Comments

This work is freely available courtesy of the American Institute of Physics.

Included in

Physics Commons

Share

COinS