Document Type


Publication Date


Published In

Journal Of Chemical Physics


Part I of this series [J. Chem. Phys. 111, 7599 (1999)] describes a simulation of H(2) adsorbed within zeolite Na-A in which a block Lanczos procedure is used to generate the first several (9) rotational eigenstates of H(2), modeled as a rigid rotor, and equilibrated at a given temperature via Monte Carlo sampling. Here, we show that rotational states are strongly perturbed by the electrostatic fields in the solid. Wave functions and densities of rotational energy states are presented. Simulated neutron spectra are compared with inelastic neutron scattering data. Comparisons are made with IR spectra in which rotational levels may appear due to rovibrational coupling. (C) 2001 American Institute of Physics.


This work is freely available courtesy of the American Institute of Physics.

Included in

Physics Commons