12-1-1979

Review Of "Case Studies In Genetics" By M. A. Tribe, I. Tallan, And M. R. Eraut

John B. Jenkins
Swarthmore College, jjenkin1@swarthmore.edu

Follow this and additional works at: http://works.swarthmore.edu/fac-biology
Part of the Biology Commons, and the Genetics Commons

Recommended Citation
http://works.swarthmore.edu/fac-biology/464

This Book Review is brought to you for free and open access by the Biology at Works. It has been accepted for inclusion in Biology Faculty Works by an authorized administrator of Works. For more information, please contact kcarter2@swarthmore.edu.
Review
Author(s): John B. Jenkins
Review by: John B. Jenkins
Source: The Quarterly Review of Biology, Vol. 54, No. 4 (Dec., 1979), pp. 451-452
Published by: The University of Chicago Press
Stable URL: http://www.jstor.org/stable/2824474
Accessed: 22-03-2016 20:21 UTC

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
IMMUNOGLOBULINS. Comprehensive Immunology, Volume 5.

Immunoglobulins, a group of related serum and lymphocyte surface proteins with antibody activity, have been the subject of intensive investigation for over thirty years. The editors of this multi-authored volume containing 16 articles did not attempt to cover the entire field of immunoglobulin structure and function. They concentrated on areas that they felt had contributed most to current understanding of this family of proteins.

As one expects of a multi-authored volume, the contributions vary in length and scope, and the style of each is largely governed by the views of its authors. The first six chapters deal with the rather classical problems of antibody structure and interaction with defined antigens. Crystallographic (Poljak), physicochemical (Cathou), and thermodynamic (Karush) views provide a comprehensive picture of the general properties (Richards et al.) of the combining site for antigen. The structural basis for the effector functions of immunoglobulins is discussed by Kehoe (Chapter 6), and a stimulating description of “Ephemeral Natural Selection and Prometheus Evolution” in immunoglobulin evolution is given by Ohno (Chapter 7). Chapter 8 (Litman and Kehoe) presents a lucid and comprehensive discussion of the phylogenetic origins of immunoglobulin structures. Chapters 8 through 13 deal with various aspects of the genetic control of immunoglobulin synthesis, including the genetic basis of variable-region diversity (Wang; Kehoe and Capra), genetic events in the production of atypical immunoglobulins (Frangione), and the distribution of variable-region subgroups (Nativig et al.). Chapter 14 (Zimmerman) describes the properties of the usual immunoglobulins which show temperature-dependent abnormalities in solubility (cryoglobulins and pyroglobulins). Choi presents a concise description of biosynthesis of immunoglobulins (Chapter 15), and the volume closes with an overview of lymphocyte membrane immunoglobulins by Pernis.

The book contains much useful information and will interest immunologists who are concerned with immunoglobulins and immunoglobulin-like cell-surface receptors. The book reflects the “state of the art,” inasmuch as a great deal of precise, detailed information is given on the amino-acid sequence of antibodies and on structural properties of the combining site for antigen. Few details are presented regarding surface immunoglobulins of B and T lymphocytes and their functions in cell activation. It is unfortunate that the volume was assembled before the recent explosion of results pertinent to the structure and arrangement of immunoglobulin genes. The book is useful, however, and bears witness to the optimistic conclusion by Cathou (p. 76) that “Immunoc hemistry does not appear to be in any danger of an early death.”

JOHN J. MARCHALONIS, Cancer Biology Program, NCI Frederick Cancer Research Center, Frederick, Maryland

This compilation of 108 articles considers five major features of chloroplast development: structure and organization of chloroplast membranes, biosynthesis of chloroplast components, development of photosynthetic activity, chloroplast genetics, and control of chloroplast development. Although these divisions seem clear, a significant amount of digging among articles is often necessary to collect bits of related information. The book does, however, provide a wealth of reference material. Many authors effectively use short introductions to place their research into current perspective. In addition, the excitement and forward movement in this field is indicated here by the presence of a number of testable model mechanisms of organelle control in a wide range of algae and higher plants.

Chloroplast Development is not for the layperson or the beginning student. Each author assumes proficiency in appropriate technology and terminology. The offset print shows the usual variation in clarity of type and figure. Probably the best place for this book is the library. Although a fine book, its high price together with the rapid changes in the field, which will quickly outdate the contents, preclude its purchase by individuals.

ROSIE ANN CATTOLICO, Botany, University of Washington

GENETICS AND EVOLUTION

CASE STUDIES IN GENETICS. Basic Biology Course, Unit 5 (Aspects of Heredity), Book 12.

It is often said that geneticists fall into two groups. One group argues that the only way to learn genetics is through problem solving; the other group views genetics more conceptually and focuses upon experiments and ideas that lead to major concepts. This book is
clearly in the former camp. It contains 229 questions, all of which deal with eukaryote cells. These questions are distributed around 10 case studies: Beadle and Tatum’s *Neurospora* work; PTC tasting; phenylketonuria; hemophilia; human blood groups; Stern’s recombination work; sickle cell anemia; industrial melanism; polyploidy in wheat; and the genetics of IQ. If these topics seem familiar to you, it is because they are all found in every modern genetics book. One finds nothing unique in this book, either in the topics covered or the questions asked.

Two previous books in the series are assumed to lay the groundwork for this one. Book 3 (*Dynamic Aspects of Cells*) covered meiosis and mitosis; Book 9 (*Protein Synthesis*) discussed DNA as the genetic material and the “central dogma.” Thus these three books form a core. But it is a hollow core. Missing are important genetic advances in prokaryote transmission genetics, developmental genetics, and modern molecular genetics. It is a core that leads the student through hundreds of problems (many of them trivial) but does not give the student a well-articulated framework for organizing fundamental genetic principles. It is a core that, on its own, simply does not meet the needs of a modern genetics course. A well-written, up-to-date genetics textbook remains the most effective supplement in the classroom. These programmed texts are inadequate.

John B. Jenkins, Biology, Swarthmore College

MEDICAL GENETIC STUDIES OF THE AMISH: SELECTED PAPERS.

This volume is a real treasure trove for anyone who is interested in human genetics, population genetics, medical genetics, or the social biology of a human religious isolate. The papers have all been published previously, but in scattered places. The present collection must be a virtually complete current representation. The editor, who of course is an author of many of these articles, since he pioneered in genetic studies of the Amish in Pennsylvania, has supplied a Preface and a brief commentary on each article. There is also a series of short biographical notes on each of the authors of articles in the collection. The papers fall into a number of categories; background, one; demography, one; population genetics, five, studies of previously known Mendelian disorders, eighteen; “new” Mendelian entities, eighteen; immunogenetic studies, four; chromosomal variations and aberrations, three; common disorders, five; epilogue; and appendix. McKusick himself is listed as an author of no less than twenty articles of the total, an indication of his outstanding place in this kind of human biology.

Bentley Glass, Editor

ORIGINS OF INBRED MICE. Workshop held in Bethesda (Maryland) February 14-16, 1978.

“Guinea pig” will perhaps forever remain enshrined in the English language as a synonym of “experimental animal,” but in the laboratory the guinea pig has long been supplanted by the mouse. The economic advan-