Economic Growth And Child Undernutrition

Stephen A. O'Connell
Swarthmore College, soconne1@swarthmore.edu

C. Smith

Let us know how access to these works benefits you

Follow this and additional works at: http://works.swarthmore.edu/fac-economics

Part of the Economics Commons

Recommended Citation
http://works.swarthmore.edu/fac-economics/419

This Article is brought to you for free and open access by the Economics at Works. It has been accepted for inclusion in Economics Faculty Works by an authorized administrator of Works. For more information, please contact myworks@swarthmore.edu.
Economic growth and child undernutrition

Sebastian Vollmer and colleagues (April, 2014)1 conclude that “the contribution of economic growth to the reduction in early childhood undernutrition in developing countries is very small, if it exists at all”. Progress will therefore require a shift from “the so-called trickle-down approach of a growth-mediated strategy” to “direct investments in health and nutrition”.1

Using the same Demographic and Health Survey data as Vollmer and colleagues,3 we found that the association between economic growth and childhood undernutrition was strong and significant. We traced the findings of Vollmer and colleagues to specific shortcomings in their empirical approach—using a measure of real gross domestic product (GDP) that distorts country-level growth rates, overlooking the influence of a few highly unusual observations, and placing too much emphasis on short intra-survey intervals—and to limitations in their underlying thought experiment. Our interpretation of the evidence is that an effective attack on childhood malnutrition must be two-pronged, combining direct health interventions with vigorous efforts to advance economic growth.

To establish these points, we worked directly with the survey-level aggregates, leaving aside important questions of within-country heterogeneity. This approach is appropriate because although the study by Vollmer and colleagues employs more than half a million child-level observations, the dataset contains only 121 pieces of information on real GDP per capita—each observation being assigned the national real GDP per capita for the relevant country and survey year. A mishandling of the survey-level relationship between real GDP per capita and undernutrition cannot be rescued through appeals to the ecological fallacy.

Columns 1–3 of the table reproduce the “very small to null” results of Vollmer and colleagues using an unbalanced panel of the 121 survey-level observations reported in their data appendix. Each column in the table shows the coefficient on the log of real GDP per capita in a bivariate logistic regression estimated by ordinary least squares. All regressions contain a full set of 36 country dummy variables and T−1=21 year dummy variables. As in the study by Vollmer and colleagues, the inclusion of country dummies removes country-level means from all variables.

Whether these initial point estimates are indeed very small depends in part on the thought experiment. The table provides a simple metric: the reduction in undernutrition that would be predicted on the basis of these coefficients, if a country that started with a prevalence rate of 50% were to grow by 2.74% per year between 2015 and 2030. A growth rate of 2.74% is not far from the sample mean, but would be enough to increase real GDP per capita by half over the course of the 2030 Agenda for Sustainable Development.

Table: Bivariate logistic regressions for child undernutrition
Development—a far cry from the 5% thought experiment emphasised by Vollmer and colleagues. Columns 1–3 make it clear that sustained growth has meaningful traction, even when using the results of Vollmer and colleagues. That traction is nonetheless modest at best, and of course we cannot reject that it is zero.

The remaining columns implement two key modifications. Columns 4–6 replace the Penn World Tables (PWT) 8.0 data with real GDP per capita in constant local currency. The PWT data are designed to facilitate cross-country comparisons of living standards. But such comparisons are not relevant in these regressions because country means have been eliminated from the data via the country dummies. What does matter is getting the growth rates right between surveys, and from this perspective, the PWT data are inappropriate. A key innovation of version 8—the chain-linking of successive benchmark years—invalidates the use of these data in studies of economic growth. Quick inspection indeed yields outlandish annual growth rates between survey years, including rates of 18 and 30 percent per annum for Nigeria. The PWT intra-survey growth rates can be loosely interpreted as unbiased estimates of the national growth rates, but with very large measurement errors (appendix p 2). The coefficients on real GDP are therefore biased towards zero. Consistent with this interpretation, two of the three coefficients are much larger when we use the correct variable, and the stunting coefficient is now statistically significant. These effects are even more dramatic when time effects are omitted (appendix p 3).

Columns 7–9 retain the appropriate GDP data but exclude extremely influential observations. This exercise could well have left the results unchanged or pushed them further towards zero. What it conveys instead is that a few unusual observations play a key part in pushing the results of Vollmer and colleagues towards zero. All three coefficients are now large and statistically significant. For the stunting and underweight variables, the point estimates (in columns 1 and 3, respectively) do not even lie within the new 90% confidence intervals ([–1.021, –0.264] for stunting, column 7; [–1.085, –0.281] for underweight, column 9). The resulting association between growth and changes in childhood nutrition is too strong to be dismissed. Sustained growth at 5% could reduce the prevalence of undernutrition by more than 10% of all children under the age of 3 years. Figure A2 (appendix p 4) illustrates this exercise, which we conduct in the “within” space of the data so that the influence calculation focuses on the coefficient on real GDP per capita. Again, coefficients are generally even larger when time effects are omitted.

In a companion piece,3 we show that coefficients also rise substantially when we focus on the longest intra-sample periods in each country. This is consistent with the greater influence of measurement error on short-period growth rates and the importance of sustained growth in changing economic behaviour. We also argue that the inclusion of time effects is a judgment call. Fixed effects are known to bias estimated coefficients towards zero in the presence of measurement error by reducing the signal-to-noise ratio in the data. Figure A3 (appendix p 6) shows the compression of sample information when time effects are included. With so few surveys per year, there is substantial additional danger that the time effects are overfitting the data rather than successfully identifying and neutralising the influence of country-invariant factors. At the very least, we believe that studies with small and unbalanced panels at their core should report results both with and without time effects.

Direct interventions are surely crucial for improving childhood undernutrition.7 But by dismissing growth—and even in placing growth and direct interventions into opposition—the study by Vollmer and colleagues has its results and its recommendations badly wrong.

We declare no competing interests. The views expressed here are solely those of the authors and do not represent official positions of the United States Government or the United States Agency for International Development.

Copyright © The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND license.