11-16-2015

Accelerated Taylor Plumes For MIF Targets

Michael R. Brown
Swarthmore College, doc@swarthmore.edu

D. A. Schaffner

Holden L. Parks, '16

Ariel B. Rock, '16

Follow this and additional works at: http://works.swarthmore.edu/fac-physics

Part of the Physics Commons

Recommended Citation

http://works.swarthmore.edu/fac-physics/236

This Poster Session is brought to you for free and open access by the Physics & Astronomy at Works. It has been accepted for inclusion in Physics & Astronomy Faculty Works by an authorized administrator of Works. For more information, please contact kcarter2@swarthmore.edu.
Accelerated Taylor plumes for MIF targets1 M.R. BROWN, D.A. SCHAFFNER, H.L. PARKS, A.B. ROCK, Swarthmore College — The SSX plasma device has been converted to a 2.5 m merging plasma wind tunnel configuration. Experiments are underway to study merging and stagnation of high density, helical Taylor states2 to employ as a potential target for magneto-inertial fusion. Eventually, SSX Taylor states will be accelerated to over 100 km/s and compressed to small volumes either by stagnation or merging. Initial un-accelerated merging studies produce peak proton densities of $5 \times 10^{15} \, cm^{-3}$. Densities are measured with a precision quadrature He-Ne laser interferometer. Typical merged plasma parameters are $T_i = 20 \, eV, T_e = 10 \, eV, B = 0.4 \, T$ with lifetimes of 100 μs. Results from a single prototype acceleration coil will be presented, as well as initial simulation studies of Taylor state plasma acceleration using multiple staged, pulsed theta-pinich coils.

1Work supported by DOE ARPA-E ALPHA program.