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This essay plans to explore, expand, and re-tell the human birth narrative. Usually, human
birth narratives focus on the origins of a new individual, focusing on the mother and fetus.
This essay discusses birth as the origin of a new community. For not only is the eukaryotic
body being reproduced, but so also are the bodies of its symbiotic microbes and so is
the set of relationships between these organic components. Several parts of the new
narrative are surprising: (1) bacterial symbionts might cause some of the characteristics of
pregnancy and prepare a symbiotic community for transfer; (2) the first bacterial colonizers
of the mammalian organism my enter the fetus prior to the lysing of the amniotic
membrane and birth; (3) the same signals that often cause immunological attack against
a microbe may serve under these conditions to signal homeostatic stability between
symbiont and host; and (4) the mother may actively provide substances that promote the
growth and settlement of helpful bacteria. The birth of the holobiont exemplifies principles
of co-evolution, co-development, niche construction, and scaffolding. Birth is nothing less
than the passage from one set of symbiotic relationships to another.
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RETHINKING THE BIRTH NARRATIVE
This essay plans to explore, expand, and re-tell the human birth
narrative. Usually, human birth narratives focus on the origins of
a new individual, focusing on the heroic trevails of the mother
or the amazing journey of fetus. I wish to discuss birth as the
origin of a new community1 . For not only is the eukaryotic
body being reproduced, but so also are the bodies of its sym-
biotic microbes and so is the set of relationships between these
organic components. Not only are the nuclear and mitochondrial
genomes being transmitted, so are the genomes of the symbi-
otic community, whose microbial genes outnumber those of the
eukaryotic component by over 100-fold (Human Microbiome
Project Consortium, 2012; McFall-Ngai et al., 2013). Birth is
nothing less than the passage from one set of symbiotic rela-
tionships to another. The holobionts (mother, fetus, infant) are
preserved, but the components of these consortia have changed.

Mammalian birth is one of the great biological stories—the
fundamental mammalian symbiosis of mother-and-fetus becom-
ing another fundamental mammalian symbiosis, that of mother-
and-child or mother-and-pup. In the classical story, the two
partners are obviously the mother and the conceptus (zygote,
embryo, fetus, child). Their interactions constitute the grand idea
behind the obstetric subspecialty of Maternal-Fetal Medicine,
which justifies its existence through the claim that the mother and
fetus constitute a co-organized interacting whole, the “maternal-
fetal unit.” Indeed, they are a symbiotic unit, a system, where the
treatment of one affects the physiology of the other. The mother

1Always be wary of male scientists telling birth narratives.

influences the fetus, providing it with nutrition, oxygen, antibod-
ies, and hormones for its growth. The fetus reciprocally influences
the mother, changing her blood circulation, immune responsive-
ness, and metabolism, while providing her with hormones to
retain pregnancy. The physiology of the mother changes as the
pregnancy continues, with both the mother and the fetus produc-
ing hormones and other growth factors to influence the other’s
survival and development.

But there is a third major player in this symbiotic mix: the
mother’s microbes. The pregnant mammal is herself a symbiotic
community, a holobiont, composed of numerous species, most of
them bacterial (Rosenberg et al., 2007; Gilbert et al., 2012). Nine
out of every 10 of the mother’s cells are microbial (Bäckhed et al.,
2005; Ley et al., 2006) and metagenomic sequencing has shown
that each human has entered into partnerships with over 150
species of bacteria (Qin et al., 2010). These bacteria are actively
metabolizing nutrients, and the blood being received by the fetus
has been substantially altered by the mother’s microbes. About
30–35% of the metabolites in mammalian blood has a bacterial
origin (Wikoff et al., 2009; McFall-Ngai et al., 2013). Different
microbes metabolize dietary products differently, and different
diets promote the population of different microbial communi-
ties within the mother (Turnbaugh et al., 2006, 2008; Frankenfeld
et al., 2014). In mice, for instance, nearly all the blood-born sero-
tonin is made by symbiotic bacteria (Wikoff et al., 2009). So
the fetus is not free of a mother’s symbiotic associations, even
if it is thought that the fetus is sterile or persists in a sterile
environment. Rather, the microbes of the mother are interacting
with it.
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So the fetus survives and develops in a network of symbi-
otic relationships provided by the pregnant mammal. When the
infant/pup is born, these young animals will be going from one set
of symbiotic associations to another. They will be leaving the sym-
biotic consortium of the mother and forming their own symbiotic
consortium. They will not be “independent organisms,” nor will
they ever be. One is always a holobiont. But at birth, one has to
pass through different symbiotic associations. Birth is the pro-
cess of leaving of one symbiotic association system and forming
another.

And remarkably, this transition and transmission is mediated
by the maternal holobiont. This transition is not as stark as might
be imagined. Rather, the mother is both actively and passively
engaged in providing the symbiotic community that will per-
sist over the life of the newborn. The standard scientific birth
narrative has been that the fetus is growing in sterile conditions
within the amnion, and that bacterial colonization of the fetus is
made possible as soon as the amnion breaks and the fetus travels
through the birth canal (see Funkhouser and Bordenstein, 2013
for a history and critique of this view). Then, according to this
hypothesis, as the fetus traverses the cervix and vagina, the bacte-
ria residing there can enter this new body, whose immune system
is not sufficiently mature to attack them. Somehow, though, only
certain bacteria can be let into this body, while other bacteria must
be kept out. Moreover, only certain areas (gut, pores, mouth, etc.)
will be allowed to retain persistent colonies, and these places will
select for different types of bacteria.

I wish to critique this standard model more thoroughly, for
recent studies find several more interactive and important roles
for the mother. The symbiotic microbiome must be understood
as constituting a third set of inherited genes. In addition to the
nucleus and mitochondria, the symbiotic microbiome is passed
from one generation to the next (see Moran, 2007; Douglas, 2010;
Gilbert, 2011). This inheritance can be vertically in the germ line
(as is often the case in invertebrates) or horizontally by infection
(as is often seen in vertebrates). In some cases, both types of trans-
mission are used. In mammals, where the germline is not seen to
contain symbiotic bacteria, the newborn acquires its symbionts
from its immediate environment. However, the mammalian fetus
does not just leave the uterus and passively acquire a new set
of symbionts. Rather, the mother actively passes the symbiotic
baton to the developing fetus, and she doesn’t relinquish control
as rapidly and immediately as one might expect from the stan-
dard story. Indeed, the colonization of the body, along with the
first breath that changes the circulatory system of the newborn,
is possibly the most important biological aspect of birth, and the
mother will be playing an active role in this process.

PREPARATIONS FOR DELIVERY
The pregnant mother (i.e., the maternal holobiont) changes dra-
matically during pregnancy, as the body undergoes hormonal,
immunological, and metabolic changes. These include fat gain
starting early in pregnancy, and insulin resistance later in preg-
nancy. These two metabolic conditions, which are often detri-
mental to men and to non-pregnant women, are thought to be
beneficial during pregnancy. At this time, increased adiposity and
increased insulin resistance are thought to support fetal growth

and to prepare the mother for lactation (Di Cianni et al., 2003;
Lain and Catalano, 2007; Nelson et al., 2010). As we will see, this
preparation for lactation is critical for the handover of symbiotic
community from the mother to the infant.

Employing 91 women and assuming that stool samples accu-
rately reflect the intestinal microbiota, Koren et al. (2012) used
polymerase chain reactions to show that the gut microbiome of
pregnant women changed dramatically during pregnancy. These
included women who took probiotics during pregnancy and who
had used antibiotics during either the first or second trimester.
In most of the women, the first-trimester gut bacteria were simi-
lar to that of the general non-pregnant population, but the third-
trimester samples differed significantly. In a majority of women,
the relative abundances of Proteobacteria and Actinobacteria
increased substantially (P = 0.0004 and 0.003, respectively) dur-
ing this time between 13 and 33 weeks of pregnancy. Moreover,
the microbial community became more streamlined, with the
diversity much reduced by the third trimester.

The importance of these bacteria to normal pregnancy was
demonstrated by transferring the bacteria from the healthy
first-trimester and third-trimester women into healthy female
germ-free mice. The mice receiving the bacteria from the stools
of first-trimester pregnant women remained normal. However,
within 2 weeks, the healthy formerly germ-free mice that received
the third-trimester bacteria had a pregnancy-like metabolic syn-
drome, complete with insulin insensitivity, excessive weight gain,
and increased markers of inflammation.

These bacteria were derived from the gut. The vaginal bacterial
community has also been analyzed (Aagaard et al., 2012; Romero
et al., 2014) and was found to have a dynamic pattern during
gestation, returning to an essentially non-pregnant state toward
the end of pregnancy. Lactobacillus species, however, appear to be
enriched during pregnancy. Several enriched Lactobacci species
digest glycogen, and they produce an acidic environment that
prevents pathogenic infection (O’Hanlon et al., 2011). One par-
ticular Lactobacillus, L. johnsonii is found in the gut and vagina.
In the gut it is an important component of the upper diges-
tive tract and is critical for the processing of bile salts (Pridmore
et al., 2004). However, L. johnsonii also produces a bacteriotoxic
compound, Lactacin F, which prevents the growth of particular
bacterial pathogens (Abee et al., 1994). So the vaginal micro-
biota appear to be helping the mother ward off infections of the
reproductive tract during pregnancy.

Thus, there is a dramatic remodeling of the gut and vagi-
nal microbiological communities over the course of pregnancy.
Although the mechanisms have not been delineated, it appears
that the hormonal changes of the host are changing the popula-
tion of microbes in the gut and vagina. These are the microbial
populations that will be experienced by the late-stage fetus as it
leaves the birth canal.

INITIAL COLONIZATION: THE SOONERS AND THE
INITIATION OF LABOR
It has long been assumed (Tissier, 1900) that the fetus develops
within a sterile environment, and that when the amnion bursts
during labor, the colonization could begin. The first microbes
would reach the fetus as it was being born. These would be the
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resident microbes of the birth canal. Later, microbes from the
mother’s breast and skin would be in line for colonizing the
newborn baby.

This would be the obvious way. However, there appear to be
“sooners.”2 New evidence affirms that the first settlers of this
newfound fetal territory are colonists from the mother’s micro-
biome that gain entry into the developing fetus, bypassing the
placental and amniotic barriers. Strangely, bacteria have been
found in normal amniotic fluid, in the umbilical cord, and in
infant’s first bowel movements, the meconium (see Funkhouser
and Bordenstein, 2013). This would indicate that the bacteria
were already in the fetus before birth. To experimentally observe
whether maternal bacteria could be transferred into the fetus,
Jimenez et al. (2008) fed pregnant mice milk that had been
inoculated with genetically labeled Enterococcus faecum bacteria.
A day before the mice were to be naturally born, the researchers
performed a Caesarean section on the mice, delivering them asep-
tically. They found that their first bowel movement not only
contained bacteria, but that some of the bacteria had the trans-
genic label that could only have been received through the oral
cavity or gut of their mothers.

However, while the vaginal microbiota might prevent
pathogenic infection, and while the gut bacteria may induce a
metabolic syndrome in the mother, these sources do not appear
to be where the initial colonizers are coming from. Surprisingly,
data suggest that the first colonizing bacteria arise from the mouth
and then work their way into the fetus while it is still within
the amnion. Molecular studies also indicated that the early col-
onization of human neonates appears to be accomplished by
bacteria originating from the oral cavity (Palmer et al., 2007;
Human Microbiome Project Consortium, 2012; Jost et al., 2012;
Milisavljevic et al., 2013). According to sequencing data (Stout
et al., 2013; Aagaard et al., 2014; Prince et al., 2014), the neona-
tal gut microbiota do not resemble the maternal vaginal or gut
microbiota, but contain populations of bacteria derived from a
placental source that stems from the oral cavity. Moreover, spe-
cific bacteria that are found normally or pathologically in the oral
cavity (and not in the lower gut or vagina) have been isolated from
human amniotic fluid (Ernest and Wasilauskas, 1985; Douvier
et al., 1999; Bearfield, 2002; and Han et al., 2004). Bacteria were
formerly thought to be found in placentae only in those mothers
at risk for preterm labor. However, Stout et al. (2013) have ques-
tioned this idea by identifying intracellular bacteria in normal
term and preterm placentae3.

The mechanism by which oral bacteria can get to the pla-
centa is not yet known. However, one possibility is that dendritic

2“Sooner” comes from an American slang for those European settlers who
entered the Oklahoma Territories of the United States prior to the legal
opening of the land.
3This has led Prince et al. (2014) to speculate that these bacteria may be
involved in the aberrant timing of parturition. It had been thought that
preterm births were caused by infections ascending from the vagina. However,
recent studies (Madianos et al., 2013) shows that these bacteria are not rep-
resentative of pathogenic vaginal microbes but are most likely a set of oral
microbes. Moreover, periodontal pathogens might reach the fetus and cause
preterm births or fetal illness. These, according to Prince and colleagues,
would be those that had colonized the placenta.

cells of the oral cavity transport bacteria to lymphatic tissue in
the placenta (see Donnet-Hughes et al., 2010; Funkhouser and
Bordenstein, 2013). The oral mucosa contains numerous popula-
tions of dendritic cells, and these cells migrate through the blood
and lymphatic vesicles to lymphoid tissues to mediate tolerance or
immunogenicity (Hovav, 2014). When reaching the lymphoid tis-
sues, the dendritic cells can diapedese across the endothelial cells
into the lymphoid tissues (see de la Rosa et al., 2003; Johnson and
Jackson, 2014). In many cases, they transport bacteria or other
potential pathogens with them, and they present these microbial
cells to the lymphocytes. The uterine decidua has a population
of resident lymphocytes, and these cells are essential for normal
implantation and the lack of rejection of the fetus (Blois et al.,
2004; Juretic et al., 2004; Laskarin et al., 2007; Zarnani et al.,
2008). So the oral cavity has a mucosa with associated dendritic
cells, and the placenta has a lymphoid region capable of receiving
dendritic cells. Recently, it was shown that dendritic cells carry-
ing pathogens in them can migrate to the placenta and enable
their parasitic passengers to infect the fetus. The transplacental
passage of the intracellular Toxoplasmosis-like parasite Neospora
caninum in mice appears to be facilitated by such dendritic cells.
Inoculation of pregnant mice with dendritic cells infected with
Neospora resulted in the migration of these dendritic cells to the
placenta, the transmission of the parasite to the offspring, and
often the resulting neonatal death (Collantes-Fernandez et al.,
2012). There is therefore a pathway by which bacteria in the oral
cavity can be transported to the placenta.

But the innate immune system of the fetus should prevent
these bacteria from entering the fetal gut. The proteins that reg-
ulate immediate (“innate”) immune responses against bacteria
in the adult are the Toll-like receptors (TLRs). Interestingly, the
activity of these receptors appears to be down-regulated in the
fetus. The amniotic fluid, in addition to providing suspension
and anti-dessication protection to the embryo, also contains large
concentrations of Epidermal Growth Factor. This protein pre-
vents the function of the TLRs. So while the early digestive tract is
being bathed by amniotic fluid (the mouth and anus are open and
exposed to amniotic fluid), the bacteria might be accepted as col-
onizers (Good et al., 2012). So there is a pathway through which
bacteria in the oral cavity can become the first colonizers of the
fetus, even before the amniotic membrane has lysed.

THE SECOND WAVE: THE COLONIZATION OF THE COLON
When John Donne famously wrote that “No man is an island,” he
was fully correct from the sociological perspective. But from the
bacterial perspective, a man is a remarkable island, and the rules
of island colonization hold for bacteria (Costello et al., 2012).
Those bacteria who arrrive first get a wide choice of options, and
they restrict the conditions for the next wave of settlers. Once
the amnion has broken, the fetus is exposed to a wide variety of
microbes, mostly from the gut and birth canal. Vaginal delivery
exposes the fetus and newborn to the microbes of the mother’s
vagina and gut, a microbiome that has changed over the course
of pregnancy (Tannock et al., 1990; Makino et al., 2011). These
bacteria appear to be very important, as babies born through
Caesarean section (i.e., not passing through the birth canal) have
an altered bacterial colonization pattern early in life compared
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with vaginally delivered babies (Ley et al., 2006; Makino et al.,
2013). These gut and vaginal bacteria initiate new host-symbiont
relationships, and they will have an important role in the health
of the holobiont (Conroy et al., 2009; Le Huërou-Luron et al.,
2010). Babies born vaginally have gut bacterial communities that
resemble those of the maternal vagina (Matsumiya et al., 2002;
Dominguez-Bello et al., 2010). Those babies born by Caesarean
section receive many of their colonizers from the hospital envi-
ronment and from the mother’s skin (Martirosian et al., 1995;
Dominguez-Bello et al., 2010). Mother’s milk also supplies bac-
teria that will reside in the newborn’s gut (Martín et al., 2003;
Collado et al., 2009; Solís et al., 2010; Garrido et al., 2012).

It takes over a year for the babies born by C-section to
have a similar bacterial profile, and during this time, they have
a lower microbial diversity, delayed colonization of important
microbes (such as Bacteroides) and reduced lymphocyte responses
(Guarner and Malagelada, 2003; Jakobsson et al., 2014). The abil-
ity of the fetus to decide which bacteria stay and which ones must
be excluded is still very much a mystery. The process of colo-
nization appears to involve many of the same molecules that are
usually used to attack bacteria. It seems that at the core of either
acceptance or rejection is recognition, and the reaction (rejection
or tolerance) depends on the context in which the fetus receives
these microbes.

Immunology is the science of recognition in contexts. The
same signal may call out for destruction or synthesis depending
on how it is presented. Here, the host recognizes symbiotic bacte-
ria apparently by the same sets of molecules usually used to attack
bacteria; but the turns this recognition into acceptance rather
than attack, and in this particular context, these bacteria are actu-
ally encouraged to settle into our guts (Chu and Mazmanian,
2013; Lee et al., 2013). This, along with the bacterial regula-
tion of pregnancy weight gain and the entry of bacteria into the
fetus prior to tocolysis, has been another surprise. The innate
immune system had been thought to recognize bacteria by their
pathogen-associated molecular patterns (PAMPs) by their pattern
recognition receptors (PRRs). It now turns out that PAMPs are
found in all microbes, including symbionts, and the agents rec-
ognized by the host’s PRRs are now called “microbe-associated
molecular patterns” (MAMPs). In mice (as well as in numerous
other organisms, including hydra and Drosophila), the activation
of PRRs in the newborn induces a homeostatic integration of host
and symbiont. It appears that the composition of the early micro-
biome dictates whether the response of the cells is inflammatory
or tolerant (See Chu and Mazmanian, 2013).

THE POWER OF POSITIVE SELECTION
Now that the newborn’s body is being colonized by microbes orig-
inating from the gut, vaginal, and oral cavities of the mother, the
problem becomes one of specificity: Which bacteria are going to
remain and which are to be eliminated? This is a critical question,
and one in which research is just beginning. However, some of the
research is pointing out how important the mother is in deter-
mining which populations persist. One of the most important
bacteria present in the mother’s intestines is Bifidobacteria. These
bacteria provide several services to the neonate (Garrido et al.,
2012). First, they actively prevent the colonization of the gut by

pathogenic bacteria and help induce and sustain the immune sys-
tem. Second, they provide essential vitamins to the infant (Lievin
et al., 2000; Schell et al., 2002; Fukuda et al., 2011). They also
increase the tight junctions that are necessary for tightly linking
the intestinal epithelial cells together (Chichlowski et al., 2012).
Surprisingly, this tightening of intestinal epithelial binding may
be essential for the cognitive health of the infant (Hsiao et al.,
2013). Bifidobacteria is a good bacterium to have as one of the
colonizers of the gut, and genetic evidence supports the idea that
mammals and Bifidobacteria have a co-evolutionary history of
helping each other for at least 200 million years.

These Bifidobacteria are encountered as the fetus squeezes
through the birth canal. Makino et al. (2013) found that specific
strains of Bifidobacteria become translocated from the mother’s
intestine to the newborn’s gut. When delivered vaginally, mono-
phyletic representatives of the woman’s intestinal Bifidobacteria
formed colonies in the newborn within 3 days of birth. This
did not occur in those babies born by Caesarean section, where
Bifidobacterial counts were lower after the first week (Makino
et al., 2013).

And the mother supports the growth of the newborn’s
Bifidobacteria colonies. One of the most interesting components
of a newborn’s diet is mother’s milk. And here came another sur-
prise: some of the complex sugars found in human mothers’ milk
are not digestible by the infant. Rather, they serve as food for
certain bacterial symbionts such as Bifidobacteria that help the
infants’ bodies develop (Sela et al., 2011; Zivkovic et al., 2011;
Yoshida et al., 2012; Underwood et al., 2013).

The genome of one of the most common Bifidobacteria
(B. longum subspecies infantis) has been sequenced and shown to
contain a remarkable region of DNA—a series of genes linked
together and dedicated to the intake and digestion of complex
sugars found specifically in the earliest secretions of mother’s
milk. This small (43 kb) unit is not found in related bacteria that
are not part of the gut microbiome, and these data indicate a
remarkable co-evolution between this symbiotic bacterium and
its host, suggesting that the host product (human milk) and the
microbial genome enabling the bacteria to use this product have
reciprocally formed each other (Sela et al., 2008). Thus, there
would be a co-evolution of human and microbe for the purpose
of gut colonization by this microbe, a colonization that would
benefit both.

Not only do the sugars in mother’s milk feed the “good guys,”
these oligosaccharides “prevent the pathogens from latching onto
healthy cells, routing trouble-makers into a dirty diaper instead”
(Bode, 2012; Manthey et al., 2014; Shugart, 2014). Mother’s milk
may also help symbiosis by instructing changes in the immune
system through microRNAs in its lipid fraction (Munch et al.,
2013).

Although each baby starts with a unique bacterial profile,
within a year the types and proportions of bacteria have con-
verged to the adult human profile that characterizes the human
digestive tract (Palmer et al., 2007). Upon weaning and ingest-
ing solid food, the bacterial population changes again, to the
more adult form (Pantoja-Feliciano et al., 2013). Interestingly, the
types of bacteria allowed to colonize depend on (1) the preva-
lence of a particular species of microbes in the environment;
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(2) which microbes have already entered the gut; (3) the
genetics of the digestive tract; and (4) the diet one receives
(Nicholson et al., 2012; Pacheco et al., 2012; Kashyap et al.,
2013).

HOLOBIONT PROCREATION
So we have re-told the birth narrative from a holobiont perspec-
tive. In doing so, several surprising hypotheses have emerged,
ideas that had not been part of the traditional account of
pregnancy:

• bacteria help regulate pregnancy
• bacteria can enter the fetus before the amnion breaks
• the activation of PRRs can mediate symbiosis as well as

immune attack
• some material in mother’s milk is for the bacteria, not the

infant.

In this new narrative, we see “birth” as involving the reproduc-
tion of the holobiont. In other words, both the mammal and
her persistent microbial populations have to be reproduced. Both
niche construction and scaffolding are critical. Niche construc-
tion is defined as “the process whereby organisms, through their
metabolism, their activities and their choices, modify their own
and/or each other’s niches” (Odling-Smee et al., 2003, p. 419).
Our symbiotic bacteria employ such niche construction in spec-
ifying their environment by changing their host’s development.
The niches in which bacteria reside are to a large part generated
by the bacteria, themselves. Some of the symbiotic microbes in the
mouse intestine, for instance, induce gene expression in the gut
epithelia not only to help the host, but to help themselves. The
normal gut microbes, such as Bacteroides, induce gene expres-
sion in the Paneth cells of the intestine, instructing these cells to
produce two compounds—angiogenin-4 and RegIII—that pre-
vent the colonization of the intestine by other species of microbes.
Bacteroides, Escherichia coli, and other symbiotic species are
impervious to this compound, while several pathogenic Gram-
positive bacteria (Enterococcus faecalis and Listeria monocytogenes)
are wiped out by it (Hooper et al., 2003; Cash et al., 2006). These
bacteria are enemies of Bacteroides and of the mammalian host.
Thus, the microbial species is modifying its niche, causing its
environment (i.e., the mammal) to change in such a way that they
can better survive.

Scaffolds are “material environmental inputs with organiza-
tions that are sensitive and responsive to the developmental state
of the developmental system being scaffolded” (Griesemer, 2014).
A scaffold facilitates developmental processes that would be diffi-
cult or costly without it, and the scaffold is often temporary. Such
scaffolds are critical and reciprocal parts of the holobiont’s birth.
First, we’ve seen that the bacteria are part of the scaffolding that
allows human reproduction. If some of the “symptoms” of late
pregnancy that support the fetus and its delivery are caused by
bacteria, then the bacteria is part of the scaffolding of human
reproduction. And if the milk sugars of the mother and the
modified immune system of the newborn enable the success-
ful reproduction of a particular set of bacteria (that will enable
the completion of the developmental capacities of the newborn),

then humans are a critical scaffolding for the reproduction of the
microbes.

The mother, through her hormones, anatomy, and milk pro-
duction, is in large part responsible for the successful handing
over of the fetus to a new set of symbionts. Going from the mater-
nal environment to the outside world is not merely leaving a
symbiotic support system and gaining “independence.” There is
no such thing as “independence.” It’s mutual dependency all the
way down, and birth is the exchanging of one symbiotic system
for another.
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