12-1-1987

Influence Of DNA On The Rate Of Porphyrin Metalation

Robert F. Pasternack
Swarthmore College; rpaster1@swarthmore.edu

E. J. Gibbs

R. Santucci

Stephanie A. Schaertel, '86

Panayiotis A. Ellinas, '87

See next page for additional authors

Follow this and additional works at: http://works.swarthmore.edu/fac-chemistry

Part of the Inorganic Chemistry Commons

Recommended Citation

http://works.swarthmore.edu/fac-chemistry/123

This Article is brought to you for free and open access by the Chemistry & Biochemistry at Works. It has been accepted for inclusion in Chemistry & Biochemistry Faculty Works by an authorized administrator of Works. For more information, please contact kkcarter2@swarthmore.edu.
Influence of DNA on the Rate of Porphyrin Metallation

Robert F. Pasternack,*a Esther J. Gibbs,b Roberto Santucci,c Stephanie Schaertep Panayiotis Ellinas,a and Stanley C. Mah

a Department of Chemistry, Swarthmore College, Swarthmore, Pennsylvania 19801, U.S.A.
b Department of Chemistry, Goucher College, Towson, Maryland 21204, U.S.A.
c Istituto di Chimica Biologica, Facolta di Roma 'La Sapienza,' 00185 Rome, Italy

Poly(dG–dC)2 and poly(dA–dT)2 have marked influences on the rate of insertion of copper(II) into cationic porphyrins reflecting the interaction mode of the porphyrin with the nucleic acid.

Nucleic acids in solution with their negatively charged phosphate backbone, tend to concentrate cations of added electrolytes in their immediate environment. Therefore, it might be anticipated that reactions between cationic reactants will be catalysed by the presence of DNA; similar catalyses at polymeric surfaces have been demonstrated for polyvinylsulphonate, for example. However, cations can interact with nucleic acids in a variety of ways involving not only coulombic attractions but also complexation of purine/pyrimidine bases, ‘external’ (e.g. groove binding) and ‘internal’ (i.e. intercalation) processes in which the purine/pyrimidine bases also play a role. The influence of added DNA on the rate of a reaction involving cations may be expected to reflect the manner in which one or the other of the reactants interacts with the nucleic acid. Conversely, it might prove possible to gain further insight into the nature of a cation–nucleic acid interaction by determining the effect of DNA on the rate of some standard chemical process.

We investigated the interactions of cationic water soluble porphyrins and metalloporphyrins with nucleic acids and find that H2TMpyP4+ and its metal derivatives not possessing axial ligands are capable of intercalating into poly(dG–dC)2 but not poly(dA–dT)2. At the low levels of drug load utilized for the kinetic studies reported here there is a correlation between mode of porphyrin binding to non-aggregated nucleic acids and the profile of the circular dichroism (c.d.) spectrum induced in the Soret region; i.e. negative bands reflect intercalation, positive bands, external (groove) binding, and conservative spectra suggest external bonding with porphyrin aggregation. For H2TMpyP–24+ at these same low drug loads, no c.d. spectrum is induced with poly(dG–dC)2 but a positive band is produced with poly(dA–dT)2. Recent studies of H2TAP4+ with a natural DNA have shown that this porphyrin does not intercalate. Based upon c.d. measurements, it appears that, under the conditions of these experiments, H2TAP4+ is capable of groove binding to either poly(dG–dC)2 or poly(dA–dT)2, perhaps with some aggregation.

We have considered the rate of insertion of copper(II) into each of these porphyrins both with and without added poly(dG–dC)2 or poly(dA–dT)2. To conduct experiments in a pH range in which the polynucleotide duplex is stable requires the addition of some potential ligand to copper(II) to prevent the precipitation of the metal hydroxide. We have used both ammonia and imidazole for this purpose (see Table 1). Previous work has shown that hexaquacobber(II) interacts extensively with DNA giving rise to structural and conforma-

† Poly(dG–dC)2 and poly(dA–dT)2 obtained from P-L Biochemicals are synthetic deoxyribonucleic acid duplexes containing alternating guanine and cytosine bases or adenine and thymine bases, respectively. The cationic porphyrins supplied by MidCentury Chemical Company are tetrakis(4-N-methylpyridyl)porphyrin (H2TMpyP4+), tetrakis(2-N-methylpyridyl)porphyrin (H2TMpyP–24+), and tetrakis(4-N,N,N-trimethylanilinium)porphyrin (H2TAP4+). See Figure 1. All porphyrins were used in the chloride form.

‡ Published on 01 January 1987. Downloaded by Swarthmore College on 28/04/2015 16:42:20.
Table 1. Experimental rate constants for the insertion of copper(I) into cationic porphyrins. ([Cu^{2+}] 380 μM; [poly(dG-dC)_2] 100 μM; [Porphyrin Cl_4] 10 μM; 25°C; pH 8.)

A. H_2TMpyP_4^+-
(a) in presence of NH_4Cl and NaCl

<table>
<thead>
<tr>
<th>[NH_4^+]_M</th>
<th>[Na^+]_M</th>
<th>poly(dG-dC)_2</th>
<th>k/s^{-1}</th>
<th>(\rho)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.10</td>
<td>N</td>
<td>2.5 × 10^{-2}</td>
<td>0.0072</td>
</tr>
<tr>
<td>0.05</td>
<td>0</td>
<td>N</td>
<td>2.2 × 10^{-2}</td>
<td>very slow</td>
</tr>
</tbody>
</table>

(b) in presence of imidazole (Imid) and NaCl

<table>
<thead>
<tr>
<th>[Imid] × 10^{3}M</th>
<th>[Na^+]_M</th>
<th>poly(dG-dC)_2</th>
<th>k/s^{-1}</th>
<th>(\rho)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>0.05</td>
<td>N</td>
<td>1.4 × 10^{-2}</td>
<td>0.014</td>
</tr>
<tr>
<td>5.0</td>
<td>0.01</td>
<td>N</td>
<td>9.1 × 10^{-2}</td>
<td>very slow</td>
</tr>
<tr>
<td>5.0</td>
<td>0.001</td>
<td>N</td>
<td>8.1 × 10^{-2}</td>
<td>very slow</td>
</tr>
</tbody>
</table>

B. H_2TMpyP-2^{2+}
(a) in presence of NH_4Cl and NaCl

<table>
<thead>
<tr>
<th>[NH_4^+]_M</th>
<th>[Na^+]_M</th>
<th>poly(dG-dC)_2</th>
<th>k/s^{-1}</th>
<th>(\rho)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.10</td>
<td>N</td>
<td>2.5 × 10^{-2}</td>
<td>0.92</td>
</tr>
<tr>
<td>0.05</td>
<td>0</td>
<td>N</td>
<td>3.0 × 10^{-2}</td>
<td>0.70</td>
</tr>
</tbody>
</table>

(b) in presence of imidazole and NaCl

<table>
<thead>
<tr>
<th>[Imid] × 10^{3}M</th>
<th>[Na^+]_M</th>
<th>poly(dG-dC)_2</th>
<th>k/s^{-1}</th>
<th>(\rho)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>0.15</td>
<td>N</td>
<td>1.8 × 10^{-2}</td>
<td>1.0</td>
</tr>
<tr>
<td>5.0</td>
<td>0.05</td>
<td>N</td>
<td>1.6 × 10^{-2}</td>
<td>0.81</td>
</tr>
<tr>
<td>5.0</td>
<td>0.01</td>
<td>N</td>
<td>1.5 × 10^{-2}</td>
<td>0.67</td>
</tr>
<tr>
<td>5.0</td>
<td>0.001</td>
<td>N</td>
<td>1.6 × 10^{-2}</td>
<td>1.0</td>
</tr>
</tbody>
</table>

C. H_2TAP^+-
(a) in presence of NH_4Cl and NaCl

<table>
<thead>
<tr>
<th>[NH_4^+]_M</th>
<th>[Na^+]_M</th>
<th>poly(dG-dC)_2</th>
<th>k/s^{-1}</th>
<th>(\rho)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.10</td>
<td>N</td>
<td>9.6 × 10^{-2}</td>
<td>0.10</td>
</tr>
<tr>
<td>0.05</td>
<td>0</td>
<td>N</td>
<td>7.6 × 10^{-2}</td>
<td>0.018</td>
</tr>
</tbody>
</table>

(b) in presence of imidazole and NaCl

<table>
<thead>
<tr>
<th>[Imid] × 10^{3}M</th>
<th>[Na^+]_M</th>
<th>poly(dG-dC)_2</th>
<th>k/s^{-1}</th>
<th>(\rho)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>0.15</td>
<td>N</td>
<td>1.6 × 10^{-2}</td>
<td>0.34</td>
</tr>
<tr>
<td>5.0</td>
<td>0.05</td>
<td>N</td>
<td>1.2 × 10^{-2}</td>
<td>0.021</td>
</tr>
<tr>
<td>5.0</td>
<td>0.01</td>
<td>N</td>
<td>1.2 × 10^{-2}</td>
<td>0.039</td>
</tr>
<tr>
<td>5.0</td>
<td>0.001</td>
<td>N</td>
<td>0.92 × 10^{-2}</td>
<td>0.12</td>
</tr>
</tbody>
</table>

\(a \) Y = yes \(i.e. \) poly(dG-dC)_2 added; \(N = \) no poly(dG-dC)_2. \(b \) \(\rho \) = (k in presence of poly(dG-dC)_2)/(k in absence of poly(dG-dC)_2) under otherwise identical conditions.
reactions can be represented by equation (1).

\[
\text{CuL}_{\alpha}^{2+} + \text{H}_2\text{P}^{4+} \underset{k}{\longrightarrow} \text{CuP}^{4+} + nL + 2\text{H}^+ \quad (1)
\]

The wavelengths of observation were: for \(\text{H}_2\text{TMpyP}^{4+}\), 518 nm (no DNA) and 532 nm (with DNA); for \(\text{H}_2\text{TMpyP-2}^{4+}\), 510 nm (no DNA) and 518 nm (with DNA); for \(\text{H}_2\text{TAP}^{4+}\), 532 nm (no DNA) and 514 nm (with DNA); for \(\text{H}_2\text{TMpyP-2}^{4+}\), 510 nm both with and without DNA; and for \(\text{H}_2\text{TAP}^{4+}\), 514 nm (no DNA) and 518 nm (with DNA). The results of these experiments are shown in Tables 1 and 2. Rate constants are reported to within \(\pm 20\%\) based upon multiple runs of the same experiment.

As can be seen from Table 1, similar kinetic patterns are obtained whether ammonia or imidazole is used to bind the copper ion. Furthermore, under identical experimental conditions in the absence of DNA, the copper insertion rates are remarkably similar for all three porphyrins although there are marked differences in basicities for these species ranging from a \(pK_a < 1\) for \(\text{H}_2\text{TMpyP-2}^{4+}\) to \(pK_a \sim 4\) for \(\text{H}_4\text{TAP}^{6+}\). As may also be seen from Table 1, the presence of poly(dG-dC)\(_2\) markedly inhibits the metallation of \(\text{H}_2\text{TMpyP}^{4+}\) presumably because the porphyrin intercalates into this synthetic DNA and is effectively removed from the copper(II)-containing solution. To account for these results we suggest the model shown in equation 2 where ‘out’ and ‘in’ refer to nonintercalated and intercalated porphyrin, respectively.

\[
\text{H}_2\text{P}^{4+} \underset{\text{CuL}_{\alpha}^{2+}}{\rightarrow} \text{CuP}^{4+} + nL + 2\text{H}^+ \quad (2)
\]

We define an apparent equilibrium constant, \(K\), in equation (2), since the intercalation process is known to be much more rapid than the metallation.

\[
K = \frac{[\text{H}_2\text{P}^{4+}\text{in}]}{[\text{H}_2\text{P}^{4+}\text{out}][\text{poly(dG-dC)}]_2} \quad (3)
\]

\(K\), as defined here, is not a true constant but depends upon \(r\) (where \(r = [\text{H}_2\text{P}^{4+}]_{\text{in}}/[\text{poly(dG-dC)}]_2\), so that we can at best provide an estimate of \(K\) from these kinetic results. The [poly(dG-dC)]\(_2\) term is the concentration of binding sites available at equilibrium taking into account near-neighbour exclusion and any other co-operative effects.\(^{5,9,13}\) Because our experiments were conducted with a large excess of poly(dG-dC)\(_2\) to porphyrin, we can estimate this term using equations provided by McGehee and von Hippel.\(^{13}\) Comparing equations (2) and (3) to equation (1) leads to equation (4).

\[
k = \frac{k_{\text{out}} + k_{\text{in}}}{1 + K[\text{poly(dG-dC)}]_2} \quad (4)
\]

Since the rate of the reaction for \(\text{H}_2\text{TMpyP-2}^{4+}\) goes virtually to zero when the ionic strength is lowered to a point at which the porphyrin is almost totally intercalated,\(^8\) we estimate \(k_{\text{in}} = 0\) dm\(^3\) mol\(^{-1}\) s\(^{-1}\). Furthermore, we approximate \(k_{\text{out}}\) with the rate constant obtained in the absence of polynucleotide. This leads to the ratio \(\rho\), as defined in equation (5). From the

\[
\rho = \frac{k}{k_{\text{out}}} = (1 + K[\text{poly(dG-dC)}]_2)^{-1} \quad (5)
\]

results of Table 1A we obtain \(K \sim 10^6\) dm\(^3\) mol\(^{-1}\) at \(\mu = 0.15\) M, in good agreement with the value of \(8 \times 10^5\) dm\(^3\) mol\(^{-1}\) determined earlier from titration experiments under similar conditions.\(^5\)

\begin{table}[h]
\centering
\caption{Comparison of polynucleotide effects on copper(II) insertion into cationic porphyrins. \((\text{Cu}^{2+}) 380 \mu\text{m}\); \([\text{polynucleotide}] 100 \mu\text{m}\); \([\text{Porphyrin CuL}_{\alpha}] 10 \mu\text{m}; 25^\circ\text{C}; \text{pH 8.})\}
\begin{tabular}{|c|c|c|c|}
\hline
\text{Polymer} & \(\rho_{GC}\) & \(\rho_{AT}\) & \\
\hline
\(\text{H}_2\text{TMpyP}^{4+}\) & 0.15 & 0.013 & 0.017 \\
 & 0.05 & <10\(^{-3}\) & 0.015 \\
 & 0.01 & <10\(^{-3}\) & 0.016 \\
 & 0.001 & <10\(^{-3}\) & 0.032 \\
\hline
\(\text{H}_2\text{TMpyP-2}^{4+}\) & 0.15 & 1.0 & 0.43 \\
 & 0.05 & 0.81 & 0.069 \\
 & 0.01 & 0.67 & 0.058 \\
 & 0.001 & 1.0 & 0.094 \\
\hline
\(\text{H}_2\text{TAP}^{4+}\) & 0.15 & 0.33 & 0.002 \\
 & 0.05 & 0.21 & 0.003 \\
 & 0.01 & 0.039 & <10\(^{-3}\) \\
 & 0.001 & 0.13 & 0.01 \\
\hline
\end{tabular}
\end{table}

We contrast these results with those obtained for \(\text{H}_2\text{TMpyP-2}^{4+}\) (Table 1B). This latter porphyrin does not intercalate into poly(dG-dC)\(_2\) and, under the conditions of our experiments, the presence of the polymer has very little effect on the metallation kinetics. Whether this result implies that \(\text{H}_2\text{TMpyP-2}^{4+}\) is not concentrated at the surface of poly(dG-dC)\(_2\) or that two off-setting effects are at work here (concentration vs. partitioning of ions and/or protection of the porphine core), is not clear from these experiments. However, it is evident that poly(dG-dC)\(_2\) has a very different influence on the metal insertion kinetics for \(\text{H}_2\text{TMpyP-2}^{4+}\) than for \(\text{H}_2\text{TMpyP}^{4+}\). By way of comparison, we note that at \(\mu = 0.15\) M, \(\rho_{\text{H}_2\text{TMpyP-2}^{4+}} \sim 100\).

With \(\text{H}_2\text{TAP}^{4+}\), although the effect is not nearly as dramatic as for \(\text{H}_2\text{TMpyP}^{4+}\), the influence of poly(dG-dC)\(_2\) is to inhibit metallation. While this porphyrin does not intercalate into poly(dG-dC)\(_2\), its interaction is apparently profound enough to partially protect the porphine core from metallation. These results are consistent with the induced c.d. spectrum in the Soret region which yields a small signal, primarily positive but with some conservative character implying a degree of porphyrin aggregation.

None of the porphyrins tested intercalates into poly(dA-dT)\(_2\) but they all provide c.d. signals in the Soret region. The profile is a simple positive band for each of \(\text{H}_2\text{TMpyP-2}^{4+}\) and \(\text{H}_2\text{TMpyP}^{4+}\), but is more complicated for \(\text{H}_2\text{TAP}^{4+}\). At low drug load, a split positive band is obtained for \(\text{H}_2\text{TAP}^{4+}\) but as the porphyrin : nucleic acid ratio \(r_{\alpha}\) is increased, a conservative spectrum is obtained suggesting porphyrin aggregation at the nucleic acid surface.

Table 2 shows a comparison of the metallation rates for poly(dG-dC)\(_2\) and poly(dA-dT)\(_2\). The effect of the polynucleotide is still the most modest for \(\text{H}_2\text{TMpyP-2}^{4+}\) but, for this porphyrin, the effect of poly(dA-dT)\(_2\) is much more profound than that of poly(dG-dC)\(_2\). This is true also for the other non-intercalating porphyrin, \(\text{H}_2\text{TAP}^{4+}\). Generally, groove binding is more favourable in A-T regions of DNA than G-C regions for both electronic and steric reasons. The degree of aggregation of the porphyrin may also be a factor in determining these rates. In the absence of poly(dA-dT)\(_2\), the copper(II) insertion rate constant obtained via absorption \(([\text{H}_2\text{TAP}^{4+}] = 10 \mu\text{m})\), agreed with one obtained via fluor-
escence ([H$_2$TAP$^{+}$] = 1 µm) to within 5%. But in the presence of the DNA, the insertion of copper(II) into H$_2$TAP$^{+}$ is an order of magnitude faster at low drug load ($r_0^{-1} \sim 100$) where aggregation is less important than at $r_0^{-1} = 10$. For H$_2$TMpyP$^{+}$ alone, the only one of these porphyrins which can intercalate into nucleic acids is poly(dG–dC)$_2$, a more effective inhibitor of metallation than poly(dA–dT)$_2$, particularly at low ionic strength. Based upon the evidence obtained thus far, protection against metallation appears to follow the order: intercalation $>$ external binding with aggregation $>$ external binding, no aggregation $>$ electrostatic interactions only.

We gratefully acknowledge financial support for this work by the National Institutes of Health (GM 34676) and the National Science Foundation (CHE-8613592). We also thank Professor Maurizio Brunori for providing space to one of us (R. F. P.) and for most useful conversations.

Received, 26th May, 1987; Com. 712

References