Sequence Determinants Of The Energetics Of Folding Of A Transmembrane Four-Helix-Bundle Protein

Kathleen P. Howard
Swarthmore College, khoward1@swarthmore.edu

J. D. Lear

W. F. DeGrado

Follow this and additional works at: http://works.swarthmore.edu/fac-chemistry

Part of the Biophysics Commons

Recommended Citation
http://works.swarthmore.edu/fac-chemistry/49
Sequence determinants of the energetics of folding of a transmembrane four-helix-bundle protein

Kathleen P. Howard*†, James D. Lear‡, and William F. DeGrado†‡

*Department of Chemistry, Swarthmore College, Swarthmore, PA 19081; and †Johnson Research Foundation, Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059

Contributed by William F. DeGrado, May 3, 2002

Although previous studies are beginning to point to the specific types of helix–helix interactions that stabilize the folds of membrane-bound helical proteins, quantitative thermodynamic data on natural membrane proteins has been very limited. Here the database is expanded substantially by adding thermodynamic data for a series of sequence variants of M2 protein from influenza A virus. The M2 protein has a single transmembrane helix that homotetramerizes to form proton-selective channels that are essential to virus function. To determine the contributions of specific residues to the folding of this protein, a series of transmembrane peptides with single-site changes near the core of the protein were studied by using sedimentation equilibrium analytical ultracentrifugation. Remarkably, a large number of the mutations increased the stability of the protein. The free energies of tetramerization of the variants can be understood in terms of current models for the structure of the protein. In general, the energetic consequences of the mutations are smaller than those observed for similar mutations in water-soluble proteins. This observation is consistent with previous studies and hence may represent a general phenomenon.

The increasing number of experimentally determined membrane protein structures and genome-wide sequence analyses are beginning to hint at emerging themes regarding the features that stabilize the structures of α-helical membrane proteins (1, 2). For example, it has become possible to identify sequence motifs and patterns of interactions that seem important for the folding of membrane proteins (3, 4). Furthermore, systematic mutagenesis experiments of a few natural helical membrane proteins (5, 6) as well as model transmembrane helices (7, 8) have contributed insight into interactions important for the association of transmembrane helices. Thus, van der Waals interactions, hydrogen bonding, and electrostatics all seem to contribute to the thermodynamics of folding of membrane proteins. However, because of the lack of thermodynamic data for mutants of membrane proteins, our understanding of the relative importance of these various interactions remains at a primitive level.

The collection of quantitative energetic information on membrane protein folding has been complicated by difficulties associated with establishing conditions for reversible folding, and only a handful of membrane proteins have been demonstrated to fold in a thermodynamically reversible manner (9, 10). Furthermore, membrane proteins fold in a number of distinct steps that involve association of the protein with the surface of the membrane, vertical insertion of helices into the bilayer, and lateral association of inserted helices to give the fully folded protein (11, 12). Although the processes of surface binding and insertion have been studied extensively, the subsequent association into a native folded protein remains poorly understood.

The self-association of homooligomerizing transmembrane helices is a particularly convenient way to study this latter folding process. For a simple two-state monomer–oligomer system, the “unfolded” state is the isolated, noninteracting monomer, whereas the oligomeric helical bundle represents the native folded form. Analytical ultracentrifugation has been used to probe the energetics of folding of the dimeric, transmembrane two-helix bundle found in glycoporphin (13, 14). However, until now data have been entirely lacking for bundles with larger numbers of helices, which might be more representative of the overall structures of more complex membrane proteins. Here we examine the energetics of tetramerization of a series of variants of a tetrameric proton channel, M2 protein from influenza A virus.

The M2 protein from influenza A virus is a 97-aa protein with a single transmembrane helix that forms proton-selective channels that are essential to virus function (15). The hydrophobic transmembrane domain of the M2 protein contains a sequence motif that mediates the formation of functional tetramers in membrane environments (16, 17). The structure of this transmembrane tetramer has been modeled extensively by using unconstrained and experimentally constrained molecular dynamics and energy-minimization techniques (18–29). In particular, Cys-scanning mutagenesis has revealed that the side chains that are most sensitive to mutation show approximate seven-residue periodicity as observed in coiled coils or bundles of straight helices with a left-handed helical crossing angle (18). The most sensitive positions presumably define the central core of the structure and are labeled “a” and “d” in Fig. 1. To determine which residues contribute to the stability and specificity of the transmembrane helix interactions, a series of peptides with sequences that include the transmembrane portion of M2 were synthesized in which the central “a” or “d” residues were changed individually to either Ala or Phe (Fig. 1). The effects of these changes on the free energy of tetramerization were determined and provide data concerning how specific side chains stabilize the energetics of assembly of a functional transmembrane channel protein.

Materials and Methods

Peptide Synthesis and Sample Preparation. A series of single site variants of M2TM peptide (residues 22–46, C-terminally amidated) were synthesized on an Applied Biosystems 433A peptide synthesizer and purified by using reversed-phase HPLC as described (30). The identities of the purified peptides were confirmed with matrix-assisted laser desorption ionization mass spectrometry.

Samples for ultracentrifugation were prepared by dissolving the desired amount of each peptide in methanol in glass vials and removing organic solvent under a stream of nitrogen. The resulting peptide films were placed under high vacuum overnight. A solution of dodecylphosphocholine (DPC) in buffer was added to each vial, and the samples were vortexed until they became clear.

Analytical Ultracentrifugation. Sedimentation equilibrium experiments were performed at 25°C on peptides solubilized in DPC micelles by using a Beckman XL-I analytical ultracentrifuge. To eliminate the contribution of DPC detergent micelles to the
buoyant molecular weight of the peptide–DPC complex, experiments were carried out at a solvent density adjusted with \(\text{H}_2\text{O} \) to equal that of the DPC. The density-matched buffer used was 50 mM Tris-HCl (pH 7.5)/0.1 M NaCl/51.5% \(\text{H}_2\text{O} \). A typical data set for each different peptide studied includes two different peptide/DPC ratios (1:150 and 1:250) with each sample being spun at three different speeds (40,000, 45,000, and 48,000 rpm). Data obtained from absorbance at 280 nm (or 230 nm for W41F and W41A, and V27A). The histidine at position 37 is the site at which changes are the most disruptive, with H37A being the peptide most impaired in its ability to form tetramers (\(\Delta\Delta G = 3.1 \text{ kcal mol}^{-1} \)). No data are shown for the G34F peptide, which apparently forms large aggregates that pellet out of solution during the centrifugation experiments. Although the CD spectra of the other M2TM peptides exhibit spectra characteristic of

Discussion

Relation of Energetics to the Predicted Structure of M2TM. It is interesting to consider the energetic consequences of these mutations in light of current models for the structure of M2TM at neutral pH. A variety of models has been proposed based on site-directed mutagenesis in conjunction with computer modeling (18), molecular dynamics calculations (19–23), IR spectroscopy (24), and solid-state NMR (25–29). They vary in the details of the models but are in good agreement with respect to (i) the packing of the helices with a left-handed tilt (ranging from \(\sim -15 \) to \(35^\circ \)), (ii) the presence of a water-filled pore near the center of the channel, and most importantly, (iii) the identities of the side chains lining the pore (29, 33). Although the lack of a high-resolution structure precludes a detailed discussion of stabilizing interactions, the results of our studies are quite consistent with the more low-resolution features that are common to all the models.

Site-directed mutagenesis indicates that Val-27, Ala-30, Gly-34, His-37, and Trp-41 form a continuous proton-conducting pore. We will consider each of these positions in succession, beginning at the N terminus of the transmembrane helix (Fig. 4). Val-27 lies at the end of the transmembrane helix. Unlike the rest of the sites changed in this study, position 27 exhibits considerable variability in sequence across the range of M2 protein sequences from various natural strains of influenza A virus. A mutation of Val-27 to Ala occurs in naturally occurring variants of the virus and indeed is slightly stabilizing to the structure of the tetramer. By contrast, Phe has not been observed at this position in naturally occurring variants and is destabilizing. The pore widens substantially at Ala-30 and Gly-34, in part because of the small size of these side chains. Modeling suggests that the pore can accommodate residues as large as a Phe at position 30, and this mutation indeed results in a modest increase in the stability of the tetramer (\(\Delta\Delta G = -1.2 \text{ kcal mol}^{-1} \)). The less drastic mutation of Gly-34 to Ala has no significant effect on stability. Thus, small-to-large mutations in this central cavity of the channel are tolerated, although the Ala-to-Phe mutation had a surprisingly small effect on the stability of the channel.
Progressing through the channel from the outside of the virus toward the interior, one next encounters His-37, which is essential for proton selectivity. In models of the neutral form of the channel, the His side chains are in van der Waals contact, thereby occluding movement of ions through the channel. In the current study, the largest energetic effect is observed after mutating this residue to Ala ($\Delta G = 3.1$ kcal/mol). The energetic penalty associated with mutating this residue is slightly less severe when it is mutated instead to the nearly isosteric but apolar residue, Phe ($\Delta G = 1.8$ kcal/mol). Because His-37 lies near the center of the transmembrane helix, it presumably transitions from being buried in the apolar region of the micelle as a monomer to the

![Diagram](image1)

Fig. 2. Sedimentation equilibrium of WT M2TM peptide in 15 mM DPC micelles. Six different A_{280}-radius profiles are shown. (Left) The three curves correspond to a peptide/DPC ratio of 1:150 (0.1 mM peptide) collected at three different spinning speeds (40,000, 45,000, and 48,000 rpm). (Right) The set of curves corresponds to a peptide/DPC ratio of 1:250 (0.06 mM peptide) at the same three speeds. Data points were fit to a monomer/tetramer equilibrium, and residuals of the fits are shown in the six upper panels. (Lower Left) The relative contributions (y axis) of tetramers and monomers as a function of total peptide concentration (x axis). (Lower Right) The ideal (left column of each pair) versus calculated amount of total peptide (right column of each pair) in each of the six data sets.

![Diagram](image2)

Fig. 3. The variation in the fraction tetramer as a function of total concentration for each of the M2TM peptides studied. Curves were calculated by using the dissociation constants determined by global fitting of the sedimentation equilibrium data. A curve for the G34F peptide is missing because the sample irreversibly precipitated during the ultracentrifuge runs.
neighboring helix (40) may contribute to a very tight interaction
M2TM, in which a remarkably large fraction of the mutations at
dimerization (14). This finding contrasts with the results for

tant for

as thermodynamic stability. Also, M2TM may have multiple
core that must accommodate the demands for function as well
proteins. M2 forms proton channels and hence has a conducting
differences in the structure and the functional roles of the
WT. These energetic differences almost certainly arise from
the structure in these regions is optimized for function rather
than stability (35). Furthermore, stability-enhancing mutations
in membrane proteins are most prevalent near the edge of the
bilayer (36). Also, because this side chain is near the C terminus
of the transmembrane helix, in the monomer it should locate to
the head-group region of the micelle (or bilayer), which is the
most favorable location for this aromatic residue (37). However,
after tetramerization, all or some of these favorable atomic
contacts are replaced by protein contacts. Thus, tetramerization
probably requires the transfer of this side chain from a favorable
location within the micelle to a protein interior.

Comparison to Other Transmembrane Proteins. Data from two other
transmembrane proteins in the literature show destabilization
for most mutations examined at helical interfaces. Glycophorin
A forms homodimers in membrane environments. In a recent
study, Ala-scanning mutagenesis and sedimentation equilibrium
showed that all mutations to residues at the helix–helix interface
of this transmembrane dimer resulted in an unfavorable ΔΔG for
dimerization (14). This finding contrasts with the results for
M2TM, in which a remarkably large fraction of the mutations at
the helix–helix interface actually are stabilizing with respect to
WT. These energetic differences almost certainly arise from
differences in the structure and the functional roles of the
proteins. M2 forms proton channels and hence has a conducting
core that must accommodate the demands for function as well
as thermodynamic stability. Also, M2TM may have multiple
low-energy conformational states that are functionally impor-
tant for “gating” but also allow more facile rearrangements in
response to mutations. By contrast, the transmembrane helices
seem to serve a structural role in glycophorin and mediate the
formation of very stable dimers.

The glycophorin dimer involves tight packing along a Gly-rich
patch, which allows very close approach of the two transmem-
brane helices (38, 39). A set of reciprocal hydrogen bonds
between the Gly C=H of one helix and a carbonyl oxygen of a
neighboring helix (40) may contribute to a very tight interaction

Table 1. Differences in free energy of association for each of the
mutants of M2TM relative to WT

<table>
<thead>
<tr>
<th>M2TM mutant</th>
<th>ΔΔG, kcal–mol⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>H37A</td>
<td>3.1 (± 0.1)</td>
</tr>
<tr>
<td>H37F</td>
<td>1.8 (± 0.1)</td>
</tr>
<tr>
<td>V27F</td>
<td>0.7 (± 0.1)</td>
</tr>
<tr>
<td>G34A</td>
<td>0.2 (± 0.2)</td>
</tr>
<tr>
<td>A30F</td>
<td>−1.2 (± 0.7)</td>
</tr>
<tr>
<td>W41A</td>
<td>−1.3 (± 0.1)</td>
</tr>
<tr>
<td>W41F</td>
<td>−1.3 (± 0.1)</td>
</tr>
<tr>
<td>V27A</td>
<td>−1.4 (± 0.4)</td>
</tr>
</tbody>
</table>

Fig. 4. The differences in the free energies of association (in kcal–mol⁻¹)
relative to the WT M2TM sequence for peptides, where “a” and “d” positions
were changed to either Ala or Phe. Error bars are calculated by the
propagation of errors from the dissociation constants calculated from the
centrifugation data for each peptide. Axial slices through the predicted
structure of the M2 proton channel (18) are shown to help rationalize ob-
served changes in stability. The sites mutated in this study are shown as
ball-and-stick representations in color.

that clamps the dimer within a very steep energy well. Indeed,
mutation of one of these Gly residues to Ala within the most
tightly packed region of the dimer destabilizes the dimer by 3.2
kcal–mol⁻¹ (14). With the exception of this mutant, the range of
ΔΔG changes in glycophorin for single site mutations at the
dimer interface (ref. 14; ~0.2–0.8 kcal–mol⁻¹ of helix) is ap-
proximately the same as the changes seen in M2, when expressed
on a per-helix basis.

Phospholamban forms a transmembrane helical homopentamer
that has been studied extensively by site-directed mu-
tagene
sphere. Although the pentameric form of this protein has been
reported to form Ca²⁺ channels in planar bilayers (41), it is
believed now that the pentamer serves a more structural role in
vivo; the pentamer appears to sequester the active, monomeric
form of the protein from interactions with the Ca²⁺-dependent
ATPase of the sarcoplasmic reticulum (42). Phospholamban has
a low tolerance for mutations to each of its “a” and “d” positions
as revealed by SDS-polyacrylamide gel electrophoresis (43, 44).
a finding which again is consistent with this interface serving a structural role to stabilize pentamer formation.

Comparison to Energetics of Mutants of Soluble Proteins. Mutations in the interior of soluble proteins generally cause larger changes in free energy than the modest effects seen for the M2 protein and glycophorin. For example, a mutation of a buried apolar side chain such as Leu, Val, or Ile to Ala generally destabilizes a protein by 3–5 kcal mol⁻¹ (45). By contrast, much smaller effects are observed in M2TM and glycophorin, in which similar mutations stabilize or destabilize folding by less than a single kcal mol⁻¹ helix. This discrepancy highlights a fundamental difference in the folding energetics of membrane-bound proteins as opposed to soluble proteins. Within the apolar region of a lipid bilayer or detergent micelle, the hydrophobic effect is no longer a major driving force for transmembrane helical association. Thus, the packing of apolar side chains makes a less favorable contribution to the overall free energy of stabilization of membrane proteins. By contrast, the energetic effects of mutating buried neutral polar side chains to alanine is roughly the same in both systems and generally is favorable by 1–2 kcal mol⁻¹ (5, 46). Contributions from buried charged side chains are expected to be even greater, but they occur infrequently in membrane proteins and not at all in some structures. Thus, in net, there appears to be fewer sources for stabilizing membrane proteins versus water-soluble proteins.

How then is it that helical membrane proteins are able to fold and function? As discussed previously (11), the cost in conformational entropy is substantially less in a membrane; the inserted unfolded state is helical already, and thus this penalty does not have to be paid to fold the proteins. A second feature is that membrane proteins might not actually be as stable as watersoluble proteins. In a recent review, Bowie (36) discusses mutagenesis studies on several different membrane proteins and makes the point that stability-enhancing mutations are far from rare, and clearly many stabilizing interactions have gone unnoticed in membrane proteins. He speculates that the lack of stability optimization in membrane proteins could be necessary for activity, for efficient protein turnover, or simply because the constraints placed on a protein by the surrounding lipid bilayer provide sufficient stability for cell viability. Clearly, more data are needed to test this assumption, but the results of this study, which provide an extensive set of thermodynamic data on a transmembrane helical protein with a well defined function beyond serving as an oligomerization domain, are consistent with this suggestion.

K.P.H. thanks David Salom and Holly Gratkowski for helpful discussions. K.P.H. acknowledges funding by the National Institutes of Health, National Science Foundation, and Swarthmore College.