Theoretical And Experimental Studies Of Collision-Induced Electronic Energy Transfer From v=0-3 Of The E(0g+) Ion-Pair State Of Br2: Collisions With He And Ar

J. M. Hutchison
Robin R. O'Hern
Thomas Alex Stephenson
Y. V. Suleimanov
A. A. Buchachenko

Follow this and additional works at: http://works.swarthmore.edu/fac-chemistry

Part of the Physical Chemistry Commons

Recommended Citation

This Article is brought to you for free and open access by the Chemistry & Biochemistry at Works. It has been accepted for inclusion in Chemistry & Biochemistry Faculty Works by an authorized administrator of Works. For more information, please contact kcarte2@swarthmore.edu.
Theoretical and experimental studies of collision-induced electronic energy transfer from $v=0–3$ of the $E(0_g^+)$ ion-pair state of Br$_2$: Collisions with He and Ar

J. Matthew Hutchison,1 Robin R. O’Hern,1 Thomas A. Stephenson,1,8 Yury V. Suleimanov,2 and Alexei A. Buchachenko2,6

1Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, USA
2Department of Chemistry, Moscow State University, Moscow 119991, Russia

(Received 31 January 2008; accepted 27 March 2008; published online 13 May 2008)

Collisions of Br$_2$, prepared in the $E(0_g^+)$ ion-pair (IP) electronic state, with He or Ar result in electronic energy transfer to the D, D^*, and β IP states. These events have been examined in experimental and theoretical investigations. Experimentally, analysis of the wavelength resolved emission spectra reveals the distribution of population in the vibrational levels of the final electronic states and the relative efficiencies of He and Ar collisions in promoting a specific electronic energy transfer channel. Theoretically, semiempirical rare gas-Br$_2$ potential energy surfaces and diabatic couplings are used in quantum scattering calculations of the state-to-state rate constants for electronic energy transfer and distributions of population in the final electronic state vibrational levels. Agreement between theory and experiment is excellent. Comparison of the results with those obtained for similar processes in the IP excited I$_2$ molecule points to the general importance of Franck–Condon effects in determining vibrational populations, although this effect is more important for He collisions than for Ar collisions. © 2008 American Institute of Physics. [DOI: 10.1063/1.2912057]

I. INTRODUCTION

Numerous detailed investigations have revealed the rich electronic energy transfer dynamics that occur when electronically excited diatomic iodine interacts with inert collision partners. $^{1–18}$ These studies have focused on the dynamics that accompany the collisions of I$_2$ following excitation to the $E(0_g^+)$ ion-pair (IP) state and document an important model system for examining nonadiabatic processes in molecules with dense rovibronic energy levels. 17 The E state is one of the six electronic states that constitute the so-called first tier of the IP states; for the first tier, all six states have T_f values that lie within \approx1500 cm$^{-1}$ of one another. 19 Collisions with atomic, diatomic, and polyatomic collision partners result in efficient and selective electronic energy transfer to some of the nearby IP states. The initial studies in this field have been the subject of an extensive review article, 17 which highlights the general conclusions of a range of investigations. These studies have focused on gaining an understanding of the branching between the various IP states, and the distribution of population in the vibrational energy manifolds within each electronic state. Briefly, these studies indicate that the electronic energy transfer cross sections increase with increasing vibrational energy within the E state and that the trends in the propensity rules for the distribution of population in vibrational levels also vary with the initial vibrational level within the E state (v_E). This variation can be traced to changes in the distribution of Franck–Condon overlaps and energy gaps between the initial and final vibrational states.

Since the publication of this initial review, additional experimental and theoretical studies have elaborated on these general trends. Akopyan et al. have extended the experimental methodology to examine the electronic energy transfer dynamics in the next highest tier of IP states in I$_2$. 4,7 Their examination of the collision-induced pathways that follow excitation of a range of vibrational levels in the $f(0_g^+)$ state demonstrated that the collision-induced vibrational distributions are consistent with those observed following excitation of the E state. The balancing of the final vibrational distributions between states with small energy gaps with the initial state and those with large Franck–Condon overlap is both delicate and general. The same group also performed a more detailed study of energy transfer from excited vibrational levels of the E state induced by atomic and molecular partners that revealed the dependence of collision dynamics on the nature and strength of the long-range interaction. 3,5,6 In further work, Hutchison et al. examined the interaction of I$_2$ ($v_E=0–2$) with CF$_4$, 13 and demonstrated that collisions with this polyatomic molecule can result in electronic energy transfer pathways that excite the lowest frequency vibration in CF$_4$ at low v_E.

In theoretical studies, a special form of intermolecular perturbation theory for quasidegenerate dipole-coupled electronic states was implemented to evaluate inductionlike and electrostatic long-range corrections to interaction potentials and diabatic couplings for colliding particles. 7,14,18 When combined with the quantum scattering approach previously
developed, this improved theory revealed the importance of the long-range interactions in driving collision-induced electronic energy transfer for a range of atomic and molecular collision partners. It also provided very good agreement with the measured rate constants and vibrational product state distributions for collisions with rare gases (Rgs) and with CF₄, allowing a deeper understanding of the role of symmetry, Franck–Condon overlaps, energies of the states involved, and properties of collision partner in the energy transfer dynamics.

With the goal of testing the generality of these experimental and theoretical results, we have now turned our attention to the electronic energy transfer pathways that accompany collisions of Br₂ in the E(0,0) state with helium and argon. Br₂ is a particularly favorable candidate to test the conclusions that result from the many studies on I₂ collisions to properly capture the distinctions in the intermolecular potentials and energy level structure that are relevant to Br₂ collisions will inform future theoretical developments in this area.

II. EXPERIMENT

We use an experimental strategy that is similar to that described in previous publications from our laboratory in Swarthmore. Double resonance excitation prepares bromine molecules in a single vibrational level of the E electronic state. A Nd³⁺:YAG (YAG denotes yttrium aluminum garnet) pumped dye laser system (Continuum Lasers YG580/TDL-50, ~0.15 cm⁻¹ bandwidth) produces light resonant with a B→X transition (λ₁), and a Nd³⁺-pumped dye laser system (Laser Photonics UV24/DL-14P and Inrad Autotracker II system, ~0.25 cm⁻¹ bandwidth) produces light resonant with the corresponding E→B transition (λ₂). We prepare four different vibrational levels of E state bromine, vₓ=0–3. Values for λ₁ and λ₂ as well as vibronic transitions (v₁, v₄) are listed in Table I. We consistently excite hot bands in the B→X transitions because significantly increased Franck–Condon factors more than compensate for the lower population of vₓ=1 in our room temperature sample.

Excitation of Br₂ vapor occurs in a glass and fused silica cell, equipped with Brewster’s angle laser inlet and exit windows. In the experiments reported we use 50 mTorr Br₂ (Aldrich, 99.99%) and a variable pressure of He (GTS, 99.9995%) or Ar (GTS, 99.9995%), typically 500–2000 mTorr. Double resonance excitation of Br₂ results in intense E→B fluorescence between 305 and 316 nm, as well as a number of weaker features. We measure Br₂ fluorescence after dispersion through a 0.5 m focal length scanning monochromator (Instruments SA 500M). The exit slit of the monochromator has been replaced with a charge-coupled device (CCD) camera (Princeton Instruments LN/CCD-2500P) which records a total spectral width of ~24 nm in a single exposure.

We simulate the dispersed fluorescence spectra to extract the distribution of electronic and vibrational states populated through collision-induced electronic energy transfer. Spectroscopic constants were taken from the literature for the electronic energy gaps and Franck–Condon overlaps in determining vibrational distributions following collisions with the simplest Rg partners.

The study of Br₂(E) dynamics is also an important test of the theoretical methodology used in previous investigations. The ability of the theoretical approaches developed for I₂ collisions to properly capture the distinctions in the intermolecular potentials and energy level structure that are relevant to Br₂ collisions will inform future theoretical developments in this area.

![FIG. 1. The first tier of IP states in Br₂. Energy on the vertical axis is relative to T₀ of the ground X(0,0) state. Vibrational levels are indicated by tick marks at the outer turning points of the four lowest energy electronic states. (See Sec. II for references.)](image-url)
tronic ground state \(X(0^+), \) excited valence states \(A'(2_u), A(1_u), \) and \(B(0_u^+), \) and IP states \(D'(2_u), \) \(\beta(1_u), \) \(E(0_u^+), \) and \(D(0_u^+), \) Rydberg–Klein–Rees (RKR) potential energy curves were calculated from the spectroscopic constants. These potentials and the Numerov method were used to calculate numerical vibrational wave functions and Franck–Condon factors.

In previous work on electronic energy transfer in \(I_2, \) we were able to prepare single rotational levels of iodine in the \(E \) IP state. We achieved this selectivity by exciting a relatively high rotational level \((J=55) \) using a peak in the \(B \rightarrow X \) vibronic transitions where the rotational fine structure is nearly completely resolved. We are unable to achieve this selectivity with bromine due to the need to excite a relatively low rotational state. The \(B \) electronic state of bromine exhibits a strong, rotationally dependent propensity toward predissociation. As a result, \(B \) state vibronic levels have considerably shorter lifetimes as \(J \) increases. Thus, we must excite a transition with a relatively low \(J \) value in the \(B \rightarrow X \) excitation step to assure that we prepare an adequate population in the \(E \) state following absorption of the second photon (\(\lambda_2 \)). For all \(B \rightarrow X \) transitions listed in Table I, we excite a peak \(\sim 3 \text{ cm}^{-1} \) to the red of the bandhead for the \(\text{Br}_2 \) mixed isotope.

We prepare \(E \) state bromine molecules in a small spread of low \(J \) rotational states, a result of the spectral complexity near the particular vibronic bandheads and our laser linewidth. In all of our spectral simulations, we have assumed a central rotational quantum number of \(J=7, \) with any spread in rotational state accounted in the spectral resolution of our monochromator/CCD combination. The quality of our spectral fits does not depend on what \(J \) value we assume to be most populated, as long as that value is relatively small \((J < 20). \)

To test that our reported vibrational distributions result from single collision encounters, we examined each electronic energy transfer pathway as a function of the pressure of the collision partner. In all cases, the intensities of spectral features due to collision-induced electronic energy transfer linearly increase with the pressure of the collision partner. Furthermore, the vibrational distributions are independent of the pressure; both results suggest no significant contribution from multiple collisions. While we did not measure the emission lifetimes of the \(\text{Br}_2 \) IP states, the corresponding lifetimes for the \(\text{I}_2 \) IP states are well documented and range from 8 to 26 ns. Assuming similar lifetimes for the \(\text{Br}_2 \) IP states, our experiments are conducted within the single-collision regime, consistent with our pressure dependent data.

III. THEORY

The theory used to calculate the rate constants and vibrational product state distributions for the nonadiabatic \(\text{Br}_2(\text{E}) + \text{He, Ar} \) collisions was developed for analogous processes involving iodine molecule, so only a brief outline is given here. The diabatic potential energy surfaces (PESs) and couplings are obtained using a combination of first-order intermolecular diatomics-in-molecule perturbation theory (IDIM PT1) and perturbation theory for the long-range three-body interactions. The IDIM PT1 model is the same as previously described. For its parametrization, we use accurate \(ab \) initio He, Ar–Br interaction potentials computed within the CCSD(T) coupled cluster method with an extended basis set augmented by the bond functions ("Oakland" potentials) from Ref. 31. The He, Ar–Br\(^{2+} \) potentials were calculated in the same manner; we remove the lowest-order induction contributions from both sets of potentials. At long range, the potentials incorporate the inductionlike correction for the strong dipole interaction of the IP states as previously evaluated and applied to the PESs of all states.

The interaction PESs and diabatic couplings of the \(\text{Br}_2\text{Rg} \) systems appeared to be very similar to those of \(\text{I}_2\text{Rg}. \) At long range, the PESs are fully determined by the inductionlike interaction between the instantaneous dipole moment of a polarizable \(\text{Rg} \) atom and the giant transition dipole moment connecting the pairs of IP states that differ only by inversion parity. To a good approximation, these moments reflect the resonant charge separation in the IP states and are identical for both halogen molecules. Differences appear only in the short-range IDIM PT1 section, owing mostly to the distinct exchange, dispersion, and high-order induction interactions in the \(\text{Rg–Br}^+ \) and \(\text{Rg–Br}^{-2} \) ions. The global van der Waals minimum in all IP states corresponds to the T-shaped configuration of the complex. For \(\text{Br}_2\text{Rg}, \) it is slightly shifted toward shorter distances than in \(\text{I}_2\text{Rg} \) systems. The well depth varies, depending on the particular state, from 50 to 55 cm\(^{-1} \) for \(\text{Br}_2\text{He} \) and from 750 to 890 cm\(^{-1} \) for \(\text{Br}_2\text{Ar}, \) being approximately 10% larger and 2%–10% smaller than in the iodine analogs, respectively.

The diatomic IP states are described using the same RKR potentials as employed for the spectral simulations (see above).

The scattering problem is solved using the electronic and vibrational close coupling rotational infinite-order sudden (EVCC-IOS) approximation for the collisions involving Hund’s case (c) molecules. We include all ten components of the six first-tier IP states (two nondegenerate, four doubly degenerate) arising from the double degeneracy of states with nonzero projection of the total molecular angular momentum on the molecule-fixed axis. We incorporate the appropriate number of vibrational states to provide convergence of the smallest vibrationally resolved cross sections within 10%. The initial angular momentum is set to \(J=7 \) in agreement with the experimental fits. The EVCC-IOS cross sections are evaluated at ten collision energies from 50 to 1500 cm\(^{-1} \). The standard expression is employed to obtain the rate constants \(k_{n'v_n'\rightarrow n_v} \) from the vibrationally resolved cross section \((\sigma) \) at \(T=300 \text{ K} \):

\[
k_{n'v_n'\rightarrow n_v}(T) = \left(\frac{8}{\pi \mu k_B T} \right)^{1/2} \int \left(k_B T \right)^{-1} E \sigma_{n'v_n'\rightarrow n_v}(E) \exp[-E/k_B T]dE,
\]

where \(n \) and \(n' \) refer to the initial and final electronic states, \(v_n' \) and \(v_n \) to the corresponding vibrational levels, and \(k_B \) is the Boltzmann constant. Vibrational product state distributions are calculated as...
FIG. 2. Dispersed fluorescence spectra of Br₂ between 258 and 295 nm obtained after excitation to \(v_F=0\). The top spectrum is from a 50 mTorr sample of pure bromine vapor and shows emission only from the state we prepare, while the lower spectrum is from a sample of 50 mTorr Br₂ mixed with 1500 mTorr He and includes emission from other electronic states populated through collision with He.

\[
P_{\nu'\rightarrow\nu}(v_F) = \frac{k_{\nu'\nu}(T)}{\sum_{\nu} k_{\nu'\nu}(T)}. \tag{2}
\]

IV. EXPERIMENTAL AND THEORETICAL RESULTS

The top half of Fig. 2 shows the relatively weak \(E(0^+_g)\rightarrow A(1^+_g)\) emission of Br₂ after excitation to \(v_F=0\). (The dominant \(E(0^+_g)\rightarrow B(0^+_e)\) emission occurs at slightly longer wavelengths.) In behavior similar to I₂, collisions with either He or Ar induce transitions in Br₂(E) to the neighboring \(D^+\), \(\beta\), and \(D\) IP states. Upon introduction of He or Ar gas to our sample cell, fluorescence due to collision-induced energy transfer dominates the emission spectrum between 250 and 300 nm. The bottom half of Fig. 2 shows the fluorescence from a cell filled with 50 mTorr Br₂ and 1500 mTorr He, in which Br₂ molecules have been excited to the state \(v_F=0\). Prominent spectral features in all fluorescence spectra after collision with He or Ar include \(D(0^+_g)\rightarrow X(0^+_g)\) emission between 255 and 280 nm and the overlapping \(\beta(1_u)\) \(\rightarrow A(1_u)\) and \(D'(2_u)\rightarrow A'(2_u)\) emissions between 284 and 295 nm.

Collisions of Br₂ in low vibrational levels of the \(E\) state with the He or Ar atoms induce energy transfer into a range of vibrational levels in the \(D^+\), \(\beta\), and \(D\) electronic IP states. To extract the distribution of vibrational levels populated through collision-induced energy transfer in a given electronic state, we perform spectral simulations of the fluorescence spectra, where the populations of the vibrational levels in the given electronic state are variable parameters.

A. \(E\rightarrow D\) transfer

Emission spectra from the \(D\) state are shown in Fig. 3. We find \(D\rightarrow X\) emission under all conditions involving the collision of Br₂ (\(v_F=0\)--3) and He [Figs. 3(a)--3(d)] or Ar atoms [Figs. 3(e)--3(h)]. Each spectrum contains a series of peaks from a collection of vibrational levels of the \(D\) state whose population depend on the initially prepared \(v_F\) level and identity of the collision partner. We find that collisions lead to significant population in only a narrow envelope of one to three vibrational levels in the \(D\) state and that this envelope moves to larger vibrational levels of the \(D\) state as we change our initially prepared level from \(v_F=0\) to \(v_F=3\).

The intensity of the emission spectra in this region appears to be quite different for He and Ar collisions. While we have normalized all the spectra in Fig. 3, emission intensity differences are apparent in the relative signal-to-noise ratios [for example, between Figs. 3(a) and 3(e)]. The improved signal-to-noise ratio observed when He is the collision partner suggests that Br₂+He collisions are more likely to populate the \(D\) state than Br₂+Ar collisions. (As discussed below, the strength of this conclusion is complicated by uncertainties associated with normalizing the \(D\) state spectra to account for the number of molecules initially excited to the \(E\) state.) This observation is similar to that observed in I₂(E)+He, Ar collision-induced electronic energy transfer, where \(E\rightarrow D\) state transfer is preferred in He collisions. The other striking difference—seen most clearly in Figs. 3(b)--3(f)—is that He and Ar collisions generate different spectral features. As discussed below, these differences are a direct reflection of \(D\) state vibrational populations that vary with the collision partner.

A qualitative analysis of the \(D\rightarrow X\) spectra is based on considering the characteristics of the \(X\) and \(D\) state potential energy curves, which have significantly different minimum bond lengths (2.28 and 3.17 Å, respectively). Thus, the low vibrational levels of the \(D\) state have significant Franck–Condon overlap only with the outer turning point of the \(X\) state potential at high vibrational levels (\(v_X=35\)--60). As a result, emission spectra from selected vibrational levels of the \(D\) state tend to resemble the shape of the \(D\) state wave function. For example, emission spectra after excitation to \(v_F=0\), Figs. 3(a) and 3(e), contain only a single progression.
of peaks with maxima near 270 nm, features indicative that the majority of the total emission is from \(v_D = 0 \). As the initially prepared state, \(v_E \), is increased, the maximum intensity shifts to longer wavelengths, indicative of emission from higher vibrational levels of the \(D \) state, whose wave functions have maximum amplitude at their turning points.

As an example of our spectral fits, Fig. 4 shows both the experimental (top half) and simulated (bottom half) \(D \rightarrow X \) emission following \(\text{Br}_2 (v_E = 1) + \text{He} \) collision-induced electronic energy transfer. Just as in the spectrum in Fig. 3(a), there is a progression of peaks with a maximum near 270 nm that originates from \(v_D = 0 \). However, the spectrum in Fig. 4 has an additional contribution from a bimodal series of peaks with maxima near 262.2 and 274.5 nm, indicative of emission from \(v_D = 1 \). Our simulation accurately reproduces all of the spectral features above and indicates a roughly equal contribution from population of the two lowest vibrational levels of the \(D \) state. Our spectral fits allow for the emission from \(v_D = 0 \) and the small, additional peaks in the bottom half of Fig. 4 are mostly due to a contribution from \(v_D = 2 \). While these peaks are not observed above the noise level in the measured spectrum, their presence in the fit gives us an estimate of the inherent uncertainty of our simulation and vibrational level population distributions.

Figure 5 shows the \(D \) state vibrational level populations following \(E \rightarrow D \) transfer extracted from spectral simulations and through our EVCC-IOS calculations. Following the presentation in Fig. 3, distributions resulting from collision with He are shown on the left, while those following collision with Ar are on the right. Results from increasing the initially prepared \(v_E \) are presented from top to bottom. From these distributions, it is clear that \(E \) state bromine displays markedly different behavior from the comparable results from \(I_2(\dot{E}) \) + He, Ar.\(^{10,12}\) Whereas He and Ar collisions produced similar vibrational state distributions in the IP pair states of iodine, our present results show markedly different dynamics between collisions of the Rgs with bromine.

Superimposed on the vibration state distributions in Fig. 5 are Franck–Condon factors between the initially prepared state \(v_E \) and \(v_D \). Because the \(r_e \) values of the \(E \) and \(D \) potentials differ by only 0.02 Å, the maximum Franck–Condon factors occur between levels with the same vibrational quantum number. There is, however, increased Franck–Condon overlap to additional vibrational levels as \(v_E \) increases. We find that He collisions are more likely to result in transitions to \(v_D \) levels with large Franck–Condon factors, whereas Ar collisions are more likely to populate \(v_D \) levels with one less vibrational quantum than the initial \(v_E \) level. Given that the \(E \) and \(D \) state potential curves are displaced in energy roughly by one unit of vibrational energy (Fig. 1), we thus observe that Ar collisions are more likely to induce a transition that minimizes the energy gap between \(v_E \) and \(v_D \).

These trends are best observed by comparing the \(v_D \) distributions from the initial states \(v_E = 0 \) and \(v_E = 1 \). At \(v_E = 0 \), both He and Ar induce transitions primarily to \(v_D = 0 \), a state 142 cm\(^{-1}\) higher in energy; however, this change is much more dominant upon collision with He. There is a near degeneracy at \(v_E = 1 \), where \(v_D = 0 \) lies just 7 cm\(^{-1}\) lower in energy. Here, Ar still primarily induces transitions to \(v_D = 0 \); however, the emission intensity is significantly larger, suggesting that energy resonance is an important factor in \(\text{Br}_2 + \text{Ar} \) collision dynamics. He collisions, on the other hand, induce transitions to both \(v_D = 0 \) and \(v_D = 1 \), indicating that both minimizing the energy gap and maximizing Franck–Condon overlap drive the energy transfer. This trend continues at \(v_E = 2 \) and \(3 \); however, the product state distributions become broader and more similar between He and Ar as the initial state goes to higher vibrational levels. Energy gaps
between \(v_E \) and the \(D \) state vibrational levels with one less quanta get larger as \(v_E \) increases; however, even at \(v_E=3 \), we still see a clear preference for He collisions to populate \(v_D = 3 \) over Ar collisions.

We see excellent agreement between experiment and theory for both He and Ar collisions at all energy levels studied. Discrepancies are more prominent at larger \(v_E \) levels; however, this may be due to the experimental error of the spectral fits being significantly greater at higher energies. As the number of \(D \) state vibrational levels populated increases, it becomes increasingly difficult to unambiguously assign certain spectral features to exact \(v_D \) levels. However, even where experiment and theory disagree on the population of a specific vibrational level, there is clear agreement that Ar collisions populate lower vibrational levels in the \(D \) state than He collisions.

B. \(E \rightarrow D' \) and \(E \rightarrow \beta \) transfer

Fluorescence spectra between 280 and 295 nm contain emission from both the \(\beta \) and \(D' \) electronic states. Figure 6 shows that collisions with He (left-hand side) or Ar (right-hand side) result in distinctly different emission spectra. Spectral simulations of the \(\beta \rightarrow A \) and \(D' \rightarrow A' \) emission reveal that He and Ar collisions result in different branching ratios for transfer to the \(\beta \) and \(D' \) states. We find that He collisions result in spectra with a roughly equal contribution from the \(\beta \) and \(D' \) state emission, while Ar collisions result in spectra containing a majority of emission from the \(\beta \) state.

We produce better quality spectral fits for spectra resulting from He collisions, where we can accurately reproduce all peaks from \(\beta \rightarrow A \) and \(D' \rightarrow A' \) emission. For Ar collision spectra, there are several peaks near 290 nm in all spectra with an unresolved baseline that we are unable to reproduce when only considering emission from the lower energy IP states. It is possible that, in these cases, there is a small and broad contribution to the total emission from the higher energy \(\delta \) and \(\gamma \) IP states; however, there is no known spectroscopic information for such transitions. Despite this limitation, we are able to reproduce the intensities of the large peaks that are unambiguously assigned to \(\beta \) state emission. Consequently, we only consider the well known emission from the \(\beta \) and \(D' \) states in our spectral simulations.

Figures 7 and 8 show vibrational state distributions in the \(\beta \) and \(D' \) states, respectively, after preparation of \(v_E = 0–3 \). Just as in our \(D \rightarrow X \) fits, we only include emission from \(v_n=0–4 \) (\(n=\beta \) or \(D' \)) for spectra originating from \(v_E = 0–2 \) and include \(v_n=0–5 \) for spectra originating from \(v_E = 3 \). We find that the quality of the fits does not improve when including emission from additional vibrational levels. Our theoretical studies do consider transfer to a larger number of vibrational levels in all cases; however, we have only shown the vibrational state distributions to \(v_n=0–5 \) for the benefit of comparison to experiment. The very small contribution of \(D' \) state emission in the Ar collision spectra, combined with the unresolved baseline features, results in large errors in our vibrational state distributions in the \(D' \) state for these experiments.

The experimental and theoretical vibrational state distributions in Figs. 7 and 8 agree very well. In transfer to the \(\beta \) state (Fig. 7), we see a preference for transfer to states with large Franck–Condon factors; however, the distributions are broader than those observed in the \(D \) state, described above.
Franck–Condon factors in both the β and D' states when He is the collision partner indicates that there are minimal energy gap effects in the energy transfer process. The ΔT_e values between the E and β or D' states are 387 and 845 cm$^{-1}$, respectively. For both electronic states, all of the final state levels with non-negligible Franck–Condon overlap involve substantial energy gaps with the initially prepared E state vibrational levels. As in the case of collisions with $I_2(E)+$He and Ar, 10,12 collisions of $Br_2(E)+$He direct population into levels with large energy gaps and large vibrational overlaps rather than near-resonant levels with small overlaps. The striking difference between the halogens is that Ar and He collisions produce much the same result when colliding with I_2, but different distributions when interacting with Br_2.

C. Rate constants for electronic energy transfer

The calculated rate constants for the observed collision-induced transitions are listed in Table II. The theory shows that the nonadiabatic transitions between the IP states of Br_2 are very efficient: The rate constant values for the dominating channels are as high as 3×10^{-16} m3 s$^{-1}$ molecule$^{-1}$. For collisions with He, the $E\rightarrow D$ energy transfer dominates, whereas the $E\rightarrow \beta$ and $E\rightarrow D'$ transitions have equal but smaller probability. The rate constant for the former transition rapidly increases with v_F, while the latter two seem to be almost independent of initial excitation. Collisions with Ar exhibit the same dependence on v_F, but in contrast to He, the most efficient transition at $v_F<3$ occurs to the β state, in qualitative agreement with experimental observations (see below).

Unlike our previous experimental investigations of the electronic energy transfer dynamics of $I_2(E)$, 10,13 we are unable to extract either absolute or relative rate constants from our experimental data on $Br_2(E)$ collisions. In the case of I_2, the radiative rate constants for all six of the first-tier IP states have been measured along with the electronic transition momenta for each of the transitions used in our analysis. 30 These data made it possible to quantify the competition between radiative relaxation of the E state and collision-induced electronic energy transfer. The data also provided a mechanism for calculating the absolute, final state specific energy transfer rate constants from our experimental intensities. $^{10-13}$
corresponding measurements of the radiative rate constants for the Br$_2$ IP states are not available. As a result, we cannot make a precise comparison with the theoretically determined energy transfer rate constants. By assuming that the variation in the Br$_2$ radiative rate constants is no more significant than that in I$_2$, however, our experimental intensities are qualitatively in accord with the trends in the theoretical energy transfer rate constants described above.

We are able, however, to compare the dependence of specific electronic energy transfer channel rate constants on the Rg collision partner. In Table III, we list the rate constant ratios k_{Ar}/k_{He} for the final electronic states considered. The agreement with the theoretical calculations is quite good, confirming that He collisions are more effective (relative to Ar collisions), in general, of populating the D state, while Ar collisions are more effective (relative to He collisions) at populating the β state. In some cases, the experimental error bars are higher than desired. Our analysis requires normalization of the D, β, and D' state emission intensity to the intensity of the $E \rightarrow A$ emission (Fig. 2). In the case of Ar collisions, however, strong emission from the β state [Figs. 6(e)–6(h)] made precise measurement of the E state emission intensity difficult.

The theoretical calculations indicate the existence of energy transfer pathways to the higher energy δ and γ IP states. According to our results, the corresponding rate constants do not exceed 10^{-18} m3 s$^{-1}$ molecule$^{-1}$ for He and 10^{-17} m3 s$^{-1}$ molecule$^{-1}$ for Ar, but rapidly grow with ν_E. As previously noted, unassigned features in our experimental spectra may result from δ and/or γ state emission when Ar is the collision partner, but these features are absent when He is the collision partner. This tentative result is consistent with the relative magnitudes of the theoretically determined energy transfer rate constants.

V. DISCUSSION

Both experimental and theoretical results reveal that Franck–Condon and energy gap trends have somewhat different weights for Br$_2(E)$ collisions with He and Ar. Comparison with similar processes in the I$_2(E)$ molecule previously studied by using the same methods allows further analysis of their relative importance.10,12,17,18 It is worthwhile to stress once again that the diabatic PESs and couplings for these systems are very similar, so differences in the dynamics should be expected to arise from the peculiarities of the IP state energy level structure.

As shown in Figs. 5, 7, and 8, for each of the final IP states (D, D', β), the distributions of Franck–Condon factors with the E state possess sharp maxima. These maxima adjoin or coincide with the quasi-resonant vibrational level of the final electronic state (D state) or are energetically distant (D' and β states). In the I$_2$ molecule the Franck–Condon distributions are significantly broader, a difference that is not reflected in the vibrational distributions for the $E \rightarrow \beta$ and $E \rightarrow D'$ transitions for I$_2$ and Br$_2$, since Franck–Condon factors dominate the final state population distribution regardless of the actual size of the vibrational overlaps.10,12 However, the $E \rightarrow D$ transitions create sharply different vibrational distributions in the two molecules. In I$_2$, low initial ν_E levels and the final D state levels ν_D with the minimum energy gap have very small Franck–Condon factors (e.g., ($\nu_E=0$, $\nu_D=4$) = 4 x 10$^{-4}$) that suppress the quasi-resonant energy transfer.10,12 In Br$_2$, quasi-resonant levels ν_D lie very close to the maximum of the Franck–Condon distribution ($\nu_E=1$–3) or even coincide with it ($\nu_D=0$). The synergy of the energy gap law and the Franck–Condon principle results not only in the predominance of the quasi-resonant energy transfer but also in a significant increase in the rate constant values. The same synergy was observed in the I$_2$ molecule for $E \rightarrow D$ transitions at higher ν_E levels12 and for $f \rightarrow F$ transitions in the second tier of IP states.7 For example, the f, $\nu_D=14$, F transition in I$_2$ resembles very much the E, $\nu_E=0$, D transition in Br$_2$. The final vibrational level $\nu_D=14$ of the F state that corresponds to the smallest energy gap simultaneously has the maximum Franck–Condon overlap with initial state and is by far the most populated.7 With an initial excitation to $\nu_D=17$, the nearest level $\nu_D=17$ is one level removed from the level with maximum vibrational overlap. The experimental results are similar to the transitions from the $\nu_E=1$–3 levels in the Br$_2$ molecule.

The nonadiabatic transitions from the E state in bromine are much more efficient than those in iodine, by one to two orders of magnitude for He and by at least an order of magnitude for Ar, according to comparable theoretical calculations.18 The rate constants for $E \rightarrow D$ transitions listed in Table II are close to those measured (and calculated) for the abovementioned $f \rightarrow F$ transitions in I$_2$ and can be explained by considering the synergy between the energy gap law and the Franck–Condon principle.7 The large rate constants for the $E \rightarrow \beta$ and $E \rightarrow D'$ transitions cannot be rationalized in this way, however. Our previous theoretical calculations16 indicate that, for I$_2$ collisions, the β and D' states are indirectly populated via the intermediate D state. For Br$_2$+Ar collisions, we carried out similar EVCC-IOS calculations in which different subspaces of the vibronic basis set expansion are included.16 These calculations also reveal the critical role of the D state as an intermediate in the population of the β and D' states in Br$_2$. Thus, the increase in the $E \rightarrow D$ transition probability from iodine to bromine naturally leads to a simultaneous increase in the $E \rightarrow \beta$ and $E \rightarrow D'$ probability. For this reason, the differences in the

Table III

<table>
<thead>
<tr>
<th>Initial state</th>
<th>Final electronic state</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D</td>
</tr>
<tr>
<td>$\nu_E=0$</td>
<td>1.0 ± 0.5a</td>
</tr>
<tr>
<td></td>
<td>0.21b</td>
</tr>
<tr>
<td>$\nu_E=1$</td>
<td>0.30 ± 0.05</td>
</tr>
<tr>
<td></td>
<td>4.2</td>
</tr>
<tr>
<td>$\nu_E=2$</td>
<td>0.28 ± 0.05</td>
</tr>
<tr>
<td></td>
<td>0.38</td>
</tr>
<tr>
<td>$\nu_E=3$</td>
<td>0.31 ± 0.10</td>
</tr>
<tr>
<td></td>
<td>0.41</td>
</tr>
</tbody>
</table>

aExperimental.
bCalculated.
Franck–Condon distributions and energy gaps in the two molecules alter the vibrational product state distributions and rate constants, but not the branching between the electronic states. An analysis of the present theoretical data and the results of measurements and calculations for the iodine molecule10,12,18 points out that the electronic branching ratios for the two molecules are indeed very similar.

An unresolved issue in our analysis is the possible role of rotational energy transfer in smoothing, to some extent, the sharp propensity in Franck–Condon factors and vibronic energy gaps. Experimentally, the rotational energy conditions for I\textsubscript{2} and Br\textsubscript{2} are rather different, with single excitation of $J=55$ in the case of I\textsubscript{2} and excitation of multiple rotational states centered at low J in Br\textsubscript{2}. The rotor constants for the molecules differ by more than a factor of 2, and this difference combined with the inconsistency in initial state preparation could contribute to the changes in vibrational distributions that we observe. Unfortunately this aspect is impossible to theoretically clarify by using the present approach, which invokes the infinite-order sudden approximation to rotational energy transfer.34,35

In any case, our theoretical approaches starting from semiempirical construction of the analytical PESs and diabatic couplings and ending with quantum scattering calculations provide very good agreement with the experimental results on the Br\textsubscript{2}(E)+Rg collisions. This success is an elaboration of that previously obtained for I\textsubscript{2}(E)+Rg (Ref. 18) and I\textsubscript{2}(J)+Rg (Ref. 7) collisions. These results justify the application of similar methods to a wide range of nonadiabatic collision-induced processes occurring in the excited states of heavy diatomic molecules.

VI. SUMMARY

The electronic energy transfer dynamics that accompany collisions of Br\textsubscript{2}(E) with He and Ar have been experimentally and theoretically examined, with excellent agreement between the investigations. Collisions with He and Ar induce electronic energy transfer to the D, D', and β IP states, although the relative rate constants substantially vary. He collisions favor population of the D state, while Ar collisions direct population predominately to the β state, results that are both consistent with previous studies of I\textsubscript{2}(E) collisions.10,12 The vibrational distributions within each electronic state vary with the identity of the collision partner, with He collisions populating vibrational levels with significant Franck–Condon overlap with the initial E state vibrational level. On the other hand, collisions with Ar favor population in vibrational levels that are closer in energy to the initially prepared level. Collision-induced population of the D state occurs with a rate constant in Br\textsubscript{2} than is significantly larger than the corresponding process in I\textsubscript{2},18 a result of the existence of energy transfer pathways that simultaneously maximize the Franck–Condon overlap and minimize the vibronic energy gap. The agreement between theory and experiment is a hopeful sign that the methodology developed to date is adequate to quantitatively apply to a wide range of nonadiabatic processes.

ACKNOWLEDGMENTS

We thank Dr. Timur V. Tscherbula for his interest and valuable assistance. Our theoretical work (Moscow) is supported by the Russian Basic Research Fund (Project Nos. 05-03-32371 and 08-03-00352) and Russian Science Support Fund (to A.A.B.). Our experimental work (Swarthmore) is supported by grants from the Research Corporation, the Camille and Henry Dreyfus Foundation Scholar/Fellow program, and the Swarthmore College Faculty Research Fund.

Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research.

\begin{itemize}
 \item C. Focsu, H. Li, and P. F. Bernath, J. Mol. Spectrosc. 200, 104 (2000).
 \item E. Hwang, P. J. Dagdigian, and J. Tellinghuisen, J. Mol. Spectrosc. 181, 297 (1997).
 \item I. N. Levine, Quantum Chemistry, 4th ed. (Allyn and Bacon, Boston, 1991).
\end{itemize}